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Selected paper

“Occurrence of backward bifurcation and prediction of disease
transmission with imperfect lockdown: A case study on
COVID-19” by Sk Shahid Nadim & Joydev Chattopadhyay.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7430254/
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COVID-19 to account for lockdown efficacy and success rate.
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Introducing model

The model proposed by Nadim and Chattopadhyay is a
compartmental model. Unlike the standard SEIR model with vital
dynamics, here, we divide the population into 6 mutually exclusive
groups:

S - Susceptible,
L - Lockdown,
E - Exposed,
I - Infected (un-notified),
J - Hospitalized/Isolated,
R - Recovered,

Total population N(t) = S(t) + L(t) + E(t) + I(t) + J(t) +R(t).



System Parameters

The model includes several additional parameters. We pay close
attention to r, l, and 1/ψ; key differences from the SEIR model
with vital dynamics.

Π − Recruitment rate of human population (source of new susceptibles)

1/µ − Average life expectancy at birth

β − Transmission rate of infected individuals

r − Lockdown efficacy (perfect =⇒ r = 0, imperfect =⇒ 0 < r < 1)

1/γ − COVID-19 incubation period (estimate range 1 - 14 days)

l − Lockdown success rate (range 0 - 1)

1/ψ − Lockdown period

η − Rate at which symptomatic infected become hospitalized/notified

δ − Death rate of hospitalized/notified population

τ1 − Recovery rate for symptomatic infected

τ2 − Recovery rate for hospitalized/notified individuals



ODEs

The model is a deterministic one, and it’s implemented via the
following system of ordinary differential equations.

dS

dt
= Π + ψL− βSI

N − J
− (µ+ l)S,

dL

dt
= lS − rβLI

N − J
− (µ+ ψ)L,

dE

dt
=

βSI

N − J
+

rβLI

N − J
− (γ + µ)E,

dI

dt
= γE − (η + τ1 + µ)I,

dJ

dt
= ηI − (τ2 + δ + µ)J,

dR

dt
= τ1I + τ2J − µR.
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Well-posedness

The model is biologically well posed by Theorem 3.1, which
guarantees two fundamental properties.

1 For t > 0, solutions with positive initial data remain positive.

2 The biologically feasible region Ω, a subset of six-dimensional
Euclidean space is positively invariant and globally attracting.

Ω =

{
(S,L,E, I, J,R) ∈ R6

+ : S + L+ E + I + J +R ≤ Π

µ

}



What is R0?

1 R0 is defined as “the number of new infections produced by a
typical infective individual in a population at a disease free
equilibrium (DFE)”.

2 More formally, it’s the spectral radius of the next generation
operator at disease free equilibrium (DFE).

3 The authors define R0 using the FV −1 approach described in
class.



Calculating R0

ε0 =
(

Π(µ+ψ)
µ(µ+ψ+l) ,

Πl
µ(µ+ψ+l) , 0, 0, 0, 0

)
(Calculate DFE)

X = (E(t), I(t), J(t)) (Identify the infected classes)

Ẋ = F − V (Decompose Ẋ)

Linearize F and V at ε0

F =

0 β(µ+ψ+rl)
µ+ψ+l 0

0 0 0
0 0 0

 , V =

γ + µ 0 0
−γ η + τ1 + µ 0
0 −η τ2 + δ + µ



R0 = ρ(FV −1) =
βγ(µ+ ψ + rl)

(µ+ γ)(η + τ1 + µ)(µ+ ψ + l)



Insights from R0

What can we say about ε0?

Lemma 3.1

The DFE is LAS whenever R0 < 1 and unstable whenever R0 > 1.

How about endemic equilibria (EE)?

Theorem 3.2

Let P1, P2 and P3 denote sets of certain parameter conditions.
The model has

1 a unique EE if P1 ⇐⇒ R0 > 1,

2 a unique EE if P2,

3 two EEs if P3,

4 no EEs otherwise.



Insights from R0

Theorem 3.2

Let P1, P2 and P3 denote sets of certain parameter conditions.
The model has

1 a unique EE if P1 ⇐⇒ R0 > 1,

2 a unique EE if P2,

3 two EEs if P3,

4 no EEs otherwise.

Take another look at case 3.

What could having two EEs mean?

To analyze this, we pick a ‘nice’ quantity to play with.

Let ε∗ = (S∗, L∗, E∗, I∗, J∗, R∗) be any EE.

Define λ∗h =
βI∗

N∗ − J∗ (the ‘force of infection’)



Super Unfortunate Result

(WOAH!) Stable DFE and stable EE can coexist with R0 < 1!

Need to get R0 < Rc0 (Rc0 point of saddle node bifurcation).

How?



How to decrease R0?

We start by highlighting an important result in the paper.

∂R0

∂l
= − (1− r)βγ(µ+ ψ)

(γ + µ)(η + τ1 + µ)(µ+ ψ + l)2
< 0

Increases in lock down success (l) always reduce R0.

Not particularly enlightening (as we defined l to have that
effect), but still good to see that the model makes sense.



What else can be done?

Aim for perfect lockdown efficacy (r = 0). Set r = 0 in ODEs.

Obtain a reduced model M with R∗
0 = βγ(µ+ψ)

(µ+γ)(η+τ1+µ)(µ+ψ+1) .

Theorem 3.4

The DFE of M is GAS in Ω whenever R∗
0 ≤

µ+ψ
µ+ψ+l < 1.



Recruitment into lockdown

In model, recruited humans (Π) feed susceptible pool only.

However Π is defined as the immigration or birth rate.

Most countries during the COVID-19 crisis have travel
advisories in place that restrict entirely, or severely limit the
inflow of incoming travellers.

If travellers are permitted into a country like Canada for
instance, they’re told to self isolate from the moment they
step foot into the country to 14 days after that day.

It would be more realistic to have the travel rate flow to the
lock down population, or to split incoming travellers into a
proportion that do self isolate and those that don’t, and
adjust the flow accordingly.



Final Takeaways

Not always safe to strictly aim for R0 < 1,

Bifurcation analysis is critical in understanding complex
dynamics,

Lockdowns DO help.


