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Mathematical models of vaccination
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Mathematical models of epidemics have a long history of contributing to the
understanding of the impact of vaccination programmes. Simple, one-line
models can predict target vaccination coverage that will eradicate an infectious
agent, whilst other questions require complex simulations of stochastic
processes in space and time. This review introduces some simple ordinary differ-
ential equation models of mass vaccination that can be used to address
important questions about the predicted impact of vaccination programmes. We
show how to calculate the threshold vaccination coverage rate that will
eradicate an infection, explore the impact of vaccine-induced immunity that
wanes through time, and study the competitive interactions between vaccine
susceptible and vaccine resistant strains of infectious agent.

One of the very earliest mathematical models in epidemiology concerned
the impact of vaccination. In 1760, Swiss mathematician Daniel
Bernoulli published a study of the predicted impact of immunization
with cowpox upon the expectation of life of the immunised population1.
Nearly 150 years later, around the time of the First World War, Ronald
Ross produced a series of mathematical models of the spread of malaria
that laid the foundations of the modern theory of the control of
infectious disease2. Ross’s great advance was to recognise, through the
exploration of mathematical models, that malaria transmission could be
prevented through mosquito control – without removing every last
mosquito. The recognition that disease transmission could be stopped
by control programmes with incomplete coverage had wide-spread
impact on the design of intervention strategies throughout the 20th
century3–5. For vaccination strategies, some of the simplest questions
that arise are: (i) what fraction of the population must be successfully
vaccinated to eradicate the infectious agent; (ii) what happens if the
target coverage for eradication is not met; (iii) does it matter if vaccine
induced immunity wanes with time; and (iv) what happens if there are
vaccine resistant sub-types? The following sections introduce
mathematical models that address these questions.
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Simple models

Amplification factors and eradication thresholds

All that is required for the incidence of an infectious disease to go into
decline is that each case should generate, on average, less than one other
case. The number of secondary infections caused by one infectious
individual is often referred to as the effective reproductive number and
denoted R. Epidemics often peak and go into decline as R falls below 1
because the pool of susceptible individuals has been temporarily
exhausted. For the trajectory of incidence to remain on a downward
course until the agent is eradicated requires that the effective reproductive
rate should remain below 1, even when the number of susceptible
individuals is at its maximum. There are two further amplification factors
that pertain (Table 1). R0, the basic reproductive number is the number of
secondary cases caused by one primary case introduced into a population
that is wholly susceptible. R0p, the basic reproductive number under
vaccination is the number of secondary cases caused by one primary case
introduced into a population in which a proportion p have been
vaccinated. For a perfect vaccine that confers life-long protection

Eq. 1

The critical vaccination proportion that will achieve eradication, pc, is
that for which the basic reproductive number under vaccination is just
equal to 1. This yields:

Eq. 2
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Table 1 Different amplification factors in mathematical models of vaccination

Amplification Name Definition Properties
factor

R0 Basic Number of secondary cases A fixed summary parameter a 
reproductive caused by one primary case property of the infectious agent the 
number introduced into a population host population and their 

that is wholly susceptible. interactions

R0p Basic Number of secondary cases A function of R0, the proportion 
reproductive caused by one primary case vaccinated and the properties of the 
number under introduced into a population vaccine
vaccination in which a proportion p have 

been vaccinated

R Effective The number of secondary cases A function of R0 and of the size of 
reproductive caused by one primary case in the susceptible population. R
number a population with the extant changes through time with the 

susceptible population depletion and replenishment of the 
susceptible population
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To calculate numerical values of pc requires estimates of R0 (Table 2),
these illustrate how the ease with which an infectious agent can be
eradicated varies widely across agents for which cheap safe and effective
vaccines are already available. This highlights the issue that the
development of such a vaccine, although a necessary prerequisite, is not
sufficient to guarantee eradication of an infectious agent.

Post-vaccination dynamics

To study the predicted dynamics of infection after the introduction of a
vaccination programme requires the use of mathematical models of
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Table 2 Numerical values of the basic reproductive number R0 and the critical vaccination
proportion pc

Infection Location Date R0 pc Reference

Measles Senegal 1964 18 94% Boue13

Smallpox West Africa 1960s 2.3 57% Foege et al14

Mumps UK 1987 8 87% Farrington15

Rubella USA 1967 6 83% Hayden et al16

Susceptible

S

Infected

I

Vaccinated

V

Recovered

R

(1-ep)µ(S+I+V+R) epµ(S+I+V+R)

βSI

γI

ωVµS µV

µRµI

Fig. 1 Modelling childhood vaccination. We consider the dynamics of the following
populations: susceptible, S; vaccinated, V; infected, I; and recovered R. The loss from the
total population by death (at a rate µ) equals the influx by birth such that the total
population is fixed in size. A fraction p of the newly born individuals are vaccinated at
birth. This vaccination takes in a fraction e of the vaccinated individuals and protects
them for an average period of 1/ω years. Susceptibles become infected at per capita rate
λ(t) = βI(t). Infectious individuals recover at rate γ to become immune, and natural
immunity is assumed to be life-long.
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transmission dynamics. The simplest model that can be used to study the
impact of vaccination keeps track of three groups of individuals:
susceptible, S; infected, I; and recovered R. The model we study here
includes a fourth group; those who have been vaccinated, V. This
refinement allows the investigation of the impact of waning immunity in
the next section (Fig. 1). If vaccine induced immunity is life-long, then
the equations of this SVIR model are:

Here, N is the total population size. The transitions described by each
term of the equations of this model are as labelled and the model’s
parameters are described in Table 3. Figure 2 uses this model to illustrate
the predicted impact of vaccination. The parameters’ values are chosen
to represent measles in an industrialised country with R0 = 11, and
epidemics occurring in biennial cycles. In the pre-vaccine era, the
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deathsinfectionsbirthsedunvaccinat

)1( SISNep
dt

dS µβµ −−−=

deathsbirthsvaccinated

VNep
dt

dV µµ −=

deathsrecoveriesinfections

IIIS
dt

dI µγβ −−=

deathsrecoveries

RI
dt

dR µγ −=

Eq. 3

Eq. 4

Eq. 5

Eq. 6

Table 3 Parameters of the models, their interpretations and numerical values

Parameter Interpretation Value Interpretation

N Population size 105

β Force of infection 0.0029 (year–1) Yields R0 of 11.15 in combination 
with N, µ and γ as given below

µ Death rate 0.02 (year–1) Average life expectancy is 50 years

γ Rate of recovery 26 (year–1) The average period of infectiousness 
is 2 weeks

e Vaccine take, the fraction 0–1
of vaccinated population 
protected by the vaccine

p Fraction of population 0–1
vaccinated at birth

ω Rate of loss of vaccine- e.g. 0.05 (year–1) Vaccine-induced immunity lasts on
induced immunity average for 20 years
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effective reproductive ratio rises and falls around the value of 1 as the
pool of susceptible individuals is depleted by epidemics of infection and
then replenished by births. At time 6 years, vaccination of a fixed
proportion of new births is introduced. Scenarios modelling the impact
of three different levels of vaccination are presented. The first achieves
coverage of 95%, which is above the critical proportion for eradication
(91% when R0 = 11). The number of infections immediately plummets,
and no further infections are seen. The effective reproductive ratio is
depressed below 1 after the introduction of vaccination and never rises
above it again. Eradication is achieved. The second scenario represents
the impact of a vaccination programme that reaches high levels of
coverage (85% of all new-borns) which are, nevertheless, not high enough
to lead to eradication of the agent. However, for the first 15 years after the
introduction of vaccination, it appears as if eradication has been achieved,
there are no infections. Then, suddenly, a new epidemic appears as if from
nowhere. This is an illustration of a phenomenon known as the ‘honey-
moon period’. This is the period of very low incidence that immediately
follows the introduction of a non-eradicating mass vaccination policy. This
happens because susceptible individuals accumulate much more slowly in
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Fig. 2 The dynamics of childhood disease. Vaccination occurs at time 6 years. Depending
on the fraction of the population that is vaccinated at birth (p) the disease is either
eradicated or relapses after a so-called honeymoon period. Parameter values used in these
simulation were the following: µ = 0.02, β = 0.0029, γ = 26, ω = 0, N = 105. This results in an
R0 of 11.15 and a pc of 0.91. For p > pc, p was equal to 0.95, for p < pc it was equal to 0.85
and for p << pc it was equal to 0.7. Upper lines depict the dynamics of the effective
reproductive number R (right axis) which equals βS/(γ + µ). The lower lines depict the
dynamics of the infected population (left axis).
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a vaccinated community. Such patterns were predicted using mathematical
models in the 1980s6 and have since been observed in communities in Asia,
Africa and South America7. Honeymoon periods are only predicted to
occur when the newly introduced vaccination programme has coverage
close to the eradication threshold. The third scenario depicted in Figure 2
is of vaccination coverage at 70%. Although epidemics in the era of
vaccination are less frequent, there is no obvious honeymoon period.

Duration of protection

Modelling waning immunity

The mathematical model represented in Equations 3–6 and Figure 2 makes
the assumption that vaccine-induced protection is life-long. There is no
waning of vaccine-induced immunity. Until the 1990s, this was a universal
assumption of mathematical models of vaccination. This assumption was
routinely made because, for most of the major vaccines against childhood
infectious disease, it is approximately correct. It is, however, important to
ask about the sensitivity of model predictions to this assumption8. The
transitions presented in Figure 1 include the possibility that vaccinated
individuals will eventually pass into the susceptible class as their vaccine-
induced immunity fails. This transition is trivially included in the equations
of the model as a term ωV added to Equation 3 and subtracted from
Equation 4.

The vaccinated basic reproductive number with waning immunity

With this term in place, equilibrium analysis of Equations 3–6 yields a
new expression relating the vaccinated reproductive number to the basic
reproductive number:

This is for coverage p with a vaccine that takes in a fraction e of
recipients and gives protection that wanes with average duration of
protection ω in a population with average expectation of life µ. This
apparently simple equation introduces a second counter-intuitive insight
into the impact of vaccination gleaned from mathematical models. The
impact of the level of coverage and the ‘take’ of the vaccine upon the
vaccinated reproductive number are as one would expect. However, the
impact of the duration of immunity is much greater than intuition might
lead one to expect. The term µ/(µ + ω) in Equation 7 is best interpreted
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as the fraction of a lifetime for which an individual is protected by a
vaccine that gives immunity that wanes at rate ω in a population with
fixed death rate µ. If the expectation of life is 50 years (µ = 0.02), then
a vaccine with immunity that wanes at the same rate is only as good as
a vaccine that gives protection that does not wane, but only takes in
50% of recipients (Fig. 3).

Post-vaccination dynamics with waning immunity

Re-arrangement of Equation 7 yields a new threshold parameter ωc, the
critical duration of immunity for a given coverage p, take e and basic
reproductive number R0. If vaccine-induced immunity wanes faster than
this critical rate, then eradication will not be achieved.

Such a scenario is illustrated in Figure 4. A vaccine that is otherwise
perfect (takes in all recipients) and which achieves total coverage yields
eradication when the waning rate is below the critical threshold level
(line marked ω < ωc in Fig. 4). But if the duration of protection is shorter
than the critical level, the control programme fails after a time of
apparent success. This failure is via a process distinct from that which
causes the honeymoon period discussed above, as it is through the

Mathematical models of vaccination

British Medical Bulletin 2002;62

[ ]1)1(
)1( 0

0

−−
−

= epR
Rc

µω Eq. 8

Fig. 3 An otherwise perfect vaccine that protects for 50 years on average is only as good
as a vaccine that takes in 50% of vaccinated individuals but gives life-long protection.
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accumulation of susceptible individuals who were vaccinated at birth
but whose immunity has since waned. It is worth noting that, as
emphasised in Figure 3, the two vaccines that give protection that wanes
‘too quickly’ in Figure 4 have very long average duration of protection,
at mean duration 25 years and 50 years for the two scenarios labelled ω
>> ωc and ω > ωc, respectively.

In short, the standard assumption that vaccine-induced immunity will
give life-long protection is a very strong assumption indeed. If it is not
true, then many of the calculations about coverage levels for eradication
will turn out to have been over-optimistic.

The evolution of vaccine resistance

The evolution of vaccine-resistant strains of infectious agents is,
potentially, a huge problem for their control by vaccination. Yet, for
many infectious diseases, it has been possible to push them to the verge
of extinction without vaccine-escape mutants arising. A theoretical
framework has recently been developed that allows investigation of why
this should be so, what properties of vaccines allow this situation, and
what might happen in situations where vaccine-resistant mutants do

Vaccination
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Fig. 4 When the waning rate of a childhood vaccine lies above the critical waning rate,
the disease cannot be eradicated. Parameters as in Figure 2, p = 1, e = 1. For a vaccine
that takes and protects in all vaccinated individuals, the critical waning rate is described
by: ωc = µ/(R0 – 1), which yields ωc = 0.00197. For ω < ωc, ω was equal to 0.001, for ω > ωc it
was equal to 0.02 and for ω >> ωc it was equal to 0.04.
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arise. A model of the simplest situation for multiple strains is presented
here. The simplest situation arises when infection with one strain confers
life-long immunity against all other strains9. More complex situations
are presented elsewhere in the published literature9–12.

Modelling infections with total cross immunity

Figure 5 represents the transitions amongst five groups of individuals that
must be considered in a model of the vaccine-driven evolution of mutant
strains. As before, there are susceptible, vaccinated and recovered
individuals. There are two important new features of this model compared
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QβwSIw + βrSIr
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µS µV
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Fig. 5 Modelling competition between strains in childhood disease. Unlike in Figure 1,
some of the infection events of strain 1 lead to infection with a mutant variant of the
wild-type strain. This strain is assumed to be inferior in terms of force of infection, but
partly resistant to the vaccination against the wild-type strain. Before vaccination, the
wild-type strain will thus out-compete the vaccine-resistant strain. The vaccine protects
against a fraction φw of infections with the wild-type strain, but only a much lower
fraction φr of infections with the vaccine-resistant strain. Immunity induced by infection
with either strain is assumed to confer total cross-immunity against all strains.
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with the model in Figure 1. First, two strains of agent exist. Occasionally,
infection with the wild-type agent will give rise to a mutant strain. In the
absence of vaccination, this mutant is at a selective disadvantage (here
modelled as being slightly less infectious to susceptible individuals than the
wild-type, βr < βs). This means that, in the absence of vaccination, this
mutant is at a competitive disadvantage and will rarely, if ever, be seen.
However, we assume that this mutant is vaccine resistant, i.e. the vaccine
confers stronger protection against the wild-type than it does against the
mutant (φr > φs). Under these circumstances, it is possible (although not
inevitable) that vaccination can shift the competitive balance between the
two strains so that, after vaccination, the new vaccine-resistant strain will
emerge. The equations of this new model, with the meaning of each
transition labelled as before, are as follows:

The dynamics of the emergence of vaccine resistance

Figure 6 uses the model defined above to illustrate the sequence of events
that could lead to the vaccination-driven emergence of a vaccine-
resistant strain. Before vaccination is introduced, only one strain is
observed. Although the vaccine-resistant strain is continuously
generated as a mutant form of the circulating strain, it is less infectious
for unvaccinated hosts and is, therefore, at a competitive disadvantage.
It is competitively excluded by the wild-type strain. At time 6 years,
vaccination is introduced. The vaccination campaign achieves 85%
coverage of all new-born individuals with a vaccine that gives 95%
protection against the only known strain. The immediate impact is
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dramatic and there follows a honeymoon period of apparent
eradication. This is ended with an epidemic of the wild-type strain for
the reasons discussed above. Thus, although under this vaccination
regimen the vaccine-resistant strain will eventually have the competitive
advantage, that advantage is not immediately manifest and indeed is
only established after a very large proportion of the population have
been vaccinated. Thus, it is only after the effective reproductive number
for the vaccine-resistant strain has exceeded that of the wild-type strain
that an epidemic of the vaccine-resistant strain emerges. It is important
to note that the strain emerges not because of a de novo mutation, but
because the substrate required by the strain (large numbers of vaccinated
hosts) passes a threshold number that gives the vaccine-resistant strain
the competitive advantage.

Is the emergence of vaccine resistance inevitable?

Although Figure 6 illustrates an example in which the vaccine-resistant
strain eventually dominates, such emergence is not an inevitable
consequence of vaccination. If the cost of resistance is high (βr << βs), the
vaccine-resistant strain will never become competitively superior. This is
equally true if the vaccine is sufficiently broad in specificity, so that
vaccine efficacy against any new strain is only barely less than efficacy
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Fig. 6 Vaccination can change the competitive balance between two strains. Parameters
as in Figure 2, p = 0.85, βw = 0.0029, βr = 0.00145, ew = 0.95, er = 0.5, Q = 0.0001.
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against the existing strain (φr = φs). Alternatively, low levels of
vaccination simply fail to ever generate enough vaccinated individuals to
give competitive dominance to the vaccine resistant strain.

Concluding remarks

We conclude by summarising the responses to the questions posed in our
introduction. The fraction of the population that must be successfully
vaccinated to eradicate an infectious agent can be expressed in terms of
that agent’s basic reproductive number, the amplification factor from
one generation to the next in a wholly susceptible population. Agents
with a low basic reproductive number (e.g. for smallpox R0 = 3) have
low threshold coverage levels for eradication. If the target coverage for
eradication is not met, there are some counter-intuitive effects of
vaccination, in particular the honeymoon-period, an interval of
particularly low incidence immediately following the introduction of a
mass vaccination programme. The assumption, inherent in many models
of vaccination, that vaccine induced immunity will be life-long, has large
consequences for the predictions of such models. If vaccine-induced
immunity wanes, the predicted target coverage for eradication is higher
than if immunity is life-long. Finally, the emergence of vaccine-resistant
strains is not an inevitable consequence of vaccination. If vaccines have
high enough efficacy and cross-reactivity or are targeted at a small
enough section of the population, vaccine-resistant strains will not be
expected ever to gain competitive dominance.

The non-linear nature of host–parasite interactions can lead to non-
intuitive responses to apparently straightforward interventions. Mathe-
matical models can act as an aid to our intuition in such circumstances,
and, when sufficient data are available, can be used to advise on strategic
objectives for vaccination programmes.
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