> Mathematics and Statistics $\int_{M} d \omega=\int_{\partial M} \omega$

Mathematics 747 / 5GT3
 Topics in Mathematical Biology

Instructor: David Earn

Lecture 6
Cholera and Influenza Pandemics
Thursday 29 October 2020

COVID-19 status today

Worldwide COVID-19 confirmed cases up to 2020-10-28

date

Worldwide COVID-19 confirmed cases up to 2020-10-28

date

Ontario COVID-19 confirmed cases up to 2020-10-27

date

Ontario COVID-19 confirmed cases up to 2020-10-27

date

Cholera

19th c. cholera epidemics in London

19th c. cholera epidemics in London

Tien, Poinar, Fisman, Earn 2011, J. R. Soc. Interface 8:756-760

19th c. cholera epidemics in London

Observations:

- 4 cholera pandemics in the 19th century
- $3 / 4$ were preceded by an out-of-season "Herald Wave"

Hypothesis:

- New strain invaded out-of-season
- Major wave occured in the summer following
- In 1866, new strain happenned to appear in the summer

Mechanistic plausibility:

- Can a sensible dynamical model capture the hypothesized process and the observed two-wave pattern?

SIWR waterborne pathogen model

Tien \& Earn 2010, Bull. Math. Biol. 72:1506-1533

New strain \Longrightarrow herald wave before main in-season wave

New strain \Longrightarrow herald wave before main in-season wave

Tien, Poinar, Fisman, Earn 2011, J. R. Soc. Interface 8:756-760

Influenza

102 years ago in Ontario

Earn 2018, "How many people died from influenza in 1918?"
In: Defining Moments Canada, ed. J. Lorinc

The 1918-1919 Influenza Pandemic in Ontario

[^0]Earn 2018, "How many people died from influenza in 1918?"
In: Defining Moments Canada, ed. J. Lorinc

Pneumonia \& Influenza Mortality, Philadelphia USA, 1918

Daily P\&I Deaths

Pneumonia \& Influenza Mortality, London England, 1918

Weekly P\&I Deaths

Why were there three distinct waves in 1918-19?

The SIR model

$$
\begin{aligned}
& \frac{d S}{d t}=-\beta S I \\
& \frac{d I}{d t}=\beta S I-\gamma I \\
& \frac{d R}{d t}=\gamma I
\end{aligned}
$$

The SIR model

The SIR model

The SIR model: Effects of Control Measures

- If a proportion (p) of the population is protected from infection (e.g., social distancing, vaccine, ...) then the "effective \mathcal{R}_{0} " is $\mathcal{R}_{0}(1-p)$.
- \therefore An epidemic will be prevented if $\mathcal{R}_{0}(1-p)<1$, i.e.,

$$
p>p_{\text {crit }}=1-\frac{1}{\mathcal{R}_{0}}
$$

- For flu, $\mathcal{R}_{0} \simeq 1.5-2 \quad \Longrightarrow \quad p_{\text {crit }} \simeq 33-50 \%$.
- For COVID-19, $\mathcal{R}_{0} \simeq 3-6 \quad \Longrightarrow \quad p_{\text {crit }} \simeq 67-83 \%$.

The SIR model: expected final size (without interventions)

- Final size Z (final proportion infected) is determined entirely by \mathcal{R}_{0} :

$$
Z=1-e^{-\mathcal{R}_{0} Z}
$$

- Formula derived for SIR model (Kermack \& McKendrick, 1927) is valid for much more realistic models (Ma \& Earn, 2006;
Miller 2012)
- For 1918 flu: $1.5 \lesssim \mathcal{R}_{0} \lesssim 2 \Longrightarrow$ Proportion of world population infected ~60-80\%
- For COVID-19: $\mathcal{R}_{0} \simeq 3-6 \Longrightarrow$ expected final size $\sim 94-99.7 \%$

Why were there three distinct waves in 1918-19?

- Use compartmental SIR framework as a starting point, but include:
- Case Fatality Proportion (CFP, ϕ);
- Rate of decay of immunity (δ).
- Basic model predicts a single epidemic wave.
- Perhaps parameters are time-varying?
- time-varying transmission rate $\beta(t)$?
- time-varying recovery rate $\gamma(t)$?
- time-varying $\delta(t)$ or $\phi(t)$?
- Best model (judged by AICc) has:
- time-varying β with 12 cubic B-spline basis;
- constant γ and ϕ;
- permanent immunity $(\delta=0)$.

Why were there three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2011, Theoretical Ecology 4:283-288

Why were there three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2011, Theoretical Ecology 4:283-288

Why were there three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2011, Theoretical Ecology 4:283-288

Why were there three distinct waves in 1918-19?

Why were there three distinct waves in 1918-19?

Why were there three distinct waves in 1918-19?

Why were there three distinct waves in 1918-19?

Why were there three distinct waves in 1918-19?

e

Why were there three distinct waves in 1918-19?

What explains time-varying
 transmission rate $\beta(t)$?

What caused the three distinct waves in 1918-19?

What caused the three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2013, Proc. R. Soc. B 280:20131345

What caused the three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2013, Proc. R. Soc. B 280:20131345

Expand SIR model

$$
\begin{aligned}
d S / d t & =-\beta S I \\
d I / d t & =\beta S I-\gamma I \\
d R / d t & =(1-\phi) \gamma I \\
d D / d t & =\phi \gamma I-g D \\
d M / d t & =g D \\
d P / d t & =g D-\lambda P
\end{aligned}
$$

Susceptible
 Infectious
 Recovered

Not infectious, will die
Died of influenza
Public perception of risk
$1 / g=$ mean time from loss of infectiousness to death
$1 / \lambda=$ mean duration of impact of deaths on public perception

Mechanistic basis of transmission rate variation:

$$
\beta(t, P)=\underbrace{\beta_{0}}_{\text {Baseline }} \cdot \underbrace{\left[e^{-\xi T(t)}\right]}_{\text {Weather }} \cdot \underbrace{[1+\alpha H(t)]}_{\text {School }} \cdot \underbrace{[1-P(t)]^{\kappa}}_{\text {Behaviour }}
$$

What caused the three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2013, Proc. R. Soc. B 280:20131345

What caused the three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2013, Proc. R. Soc. B 280:20131345

What caused the three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2013, Proc. R. Soc. B 280:20131345

What caused the three distinct waves in 1918-19?

He, Dushoff, Day, Ma, Earn 2013, Proc. R. Soc. B 280:20131345

What caused the three distinct waves in 1918-19?

- Behavioural response to perception of risk
- cannot fit three distinct waves without it
- school closing and weather have detectable effects, but much smaller than behaviour change

Why were there two distinct waves
in 2009?

2009 Influenza Pandemic in Alberta

Weekly Confirmed pH1N1

2009 Influenza Pandemic in Alberta

2009 Influenza Pandemic in Alberta

School ages Other ages

- Cases fell in school ages when schools closed
- Cases fell in other ages 3-4 weeks later
- Second wave began a few weeks after schools re-opened
- Mass vaccination started in late October
- Investigate mechanisms with two-age-class SIR model

2009 Influenza Pandemic in Alberta

2009 Influenza Pandemic in Alberta

School Age

Other Ages

Earn, He, Loeb, Fonseca, Lee, Dushoff 2012, Ann. Int. Med. 156, 173-181

2009 Influenza Pandemic in Alberta

- Schools closing had a major effect on attenuating the first wave
- Weather also had a detectable effect
- Summer wave would have been much larger if schools had not closed

[^0]: 1918 population:
 2.8×10^{6}
 Max P\&I per $10^{5} /$ day:
 11.7

