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Course information

The course web site:
http://davidearn.github.io/tmb2020

Office hours are by appointment (online only):
E-mail earn@math.mcmaster.ca

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology

http://davidearn.github.io/tmb2020
mailto:earn@math.mcmaster.ca?subject=Math%20747%20/%205GT3:%20
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Software

ASAP, install the software discussed on the Software page on
the course web site:

LATEX

R

RStudio
Emacs

Note: the Software page also contains some info about
spell-checking and counting words in LATEX documents.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology

https://davidearn.github.io/math4mb/software.html
http://www.math.mcmaster.ca/earn/4MB3
https://davidearn.github.io/math4mb/software.html
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Attendance

Who is here?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Epidemic
Modelling

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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## Warning: replacing previous import
’vctrs::data frame’ by ’tibble::data frame’ when
loading ’dplyr’

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Daily SARS-CoV-1 in 2003 (Worldwide)
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Daily SARS-CoV-2 in 2020 (Worldwide)
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Daily SARS-CoV-1 vs SARS-CoV-2 (Worldwide)
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Daily SARS-CoV-2 (Worldwide) exponential growth fits
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Pneumonia & Influenza Mortality, Philadelphia, 1918
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Modelling challenge

Develop a model that helps us understand the graph on the
previous slide, based on mechanisms of disease spread.

Only one variable is observed (P&I deaths per day) so
construct a model containing only one variable.
Think about how disease spreads and express your thoughts
with mathematical notation.
Derive a differential equation that models the process of
disease transmission.
Analyze the model and determine its strengths and
weaknesses/limitations.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Make (Biological) Assumptions Clear

1 Assume the disease is transmitted by contact between an
infected individual and a susceptible individual.

2 Assume the latent period (delay between being infected and
becoming infectious) is so short that it can be ignored
(technically assume it is zero).

3 Assume all members of the population are identical and
respond identically to the disease. In particular, all susceptible
individuals are equally susceptible and all infected individuals
are equally infectious.

4 Assume the population size is fixed during the epidemic, i.e.,
ignore births, migration, and deaths from causes other than
the disease, and count individuals who have died from the
disease as part of the population.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology



Epidemic Modelling Intro Constructing a model 14/120

About Assumptions. . .

Note that the first assumption on the previous slide is actually
correct.
The other assumptions are wrong, but are reasonable
approximations.
It is best to start as simple as possible and add complexity
later, in order to:

obtain a model that actually succeeds in explaining the data
with as few ingredients as possible;
identify model features that are most important;
check that inferences we draw from our model(s) are robust to
the inclusion of more biological details/realism.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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What variables should we include in our model?

Independent variable: time (t)
Dependent variable: Many options, e.g.,

Incidence (number of new infections per unit time)
Prevalence (total current number of infected individuals)
Death rate (number of deaths per unit time)
Death toll (number of deaths so far)

So, what would be best?
Not deaths, because whether or not you die may be unrelated
to how much you transmit.
But deaths are what we observe! What to do?!?

Even when we have case counts (e.g., SARS-CoV-2), deaths
may be more useful. Why?

Make another assumption. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Additional assumption(s)

We actually want to know incidence or prevalence, but we
observe deaths.
Under what circumstances would daily deaths be a good
estimate of incidence? (i.e., What must we assume in addition
to the assumptions we have already made.)

5 Assume that the time from infection to death is exactly the
same (a certain number of days) for every individual who dies.

6 Assume that the probability of dying from the disease is the
same for every individual who is infected.

Then daily death counts are proportional to daily incidence a
certain number of days in the past, i.e., the “mortality curve”
that we observe is a translated and scaled version of the
“epidemic curve” (new cases per day).

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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So. . . what variables should we include in our model?

Independent variable: time (t)
Dependent variable: one of:

Incidence (number of new infections per unit time)
Prevalence (total current number of infected individuals)

Which one?
Choose prevalence (I) because anybody who is currently
infectious can infect others, so it will probably be easier to
formulate a transmission model based on prevalence.
(Try not to lose sight of underlying biological mechanisms.)
But our mortality curve is related to incidence, not
prevalence!?! Argh. What to do?!?
Let’s work with prevalence and see how it works out.
Maybe we’ll be able to derive the incidence curve from a
model based on prevalence.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Notational note

We use I for prevalence because prevalence is the number of
infected individuals.

So, let’s try to write down a model. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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A first (näıve) attempt at an epidemic model

Variables: time t, prevalence I(t)
How does I increase?
Start with I0 infected individuals at time t = 0. What
happens for t > 0.
Let B = average number of contacts with susceptible
individuals that lead to a new infective per unit time per
infective in the population (and suppose B is constant). Then

I(t + ∆t) ' I(t) + B I(t)∆t

In the limit ∆t → 0, we have

dI
dt = BI =⇒ I(t) = I0eBt

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Beware: implicit assumptions that should be explicit

Ignored discrete nature of individuals when taking limit.

Ignored finite infectious periods!

Sometimes it isn’t obvious that we’ve made some assumptions
until after we see what the model predicts.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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How can we tell if our model is good?

Compare model predictions with data.

What is the best way to do that?

Depends on what predictions we’re trying to test.

Model predicts exponential growth.
How should we test that prediction?

Transforming the data might help.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Original data: P&I Mortality, Philadelphia, 1918
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Logarithmic scale: P&I Mortality, Philadelphia, 1918
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Parameter estimation

How can we estimate the model parameters, I0 and B, from the
P&I data?

Fit a straight line through the part of the logarithmic
mortality curve that looks straight.

The slope of the line is B.

The “intercept” is log I0.
“Intercept” in quotes because we need to define t = 0 as the
time when exponential growth begins.

Note: Parameter estimation is, in general, a very tricky
business and deserves a great deal of attention (beyond the
scope of this course).

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Näıve epidemic model
Variables: time t, prevalence I(t)

Parameter B = average number of contacts with susceptible
individuals that lead to a new infective per unit time per
infective in the population

dI
dt = BI =⇒ I(t) = I0eBt
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Näıve model: the good and the bad

Good:
Makes clear predictions
Predictions can be tested
Estimation of parameter (B) is easy

B is the slope of the straight portion of the epidemic curve on
the log scale. (Why?)
Remember we are imagining that the mortality curve is
equivalent to the epidemic curve after translation and scaling.

Bad:
Model is consistent only with exponential growth phase.
Absurd long-term prediction: unbounded growth in I(t)

Implicitly assumed that population size N =∞.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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How can we improve our model?

Insist that population size is finite (N <∞).

Keep track of both infectives I(t) and susceptibles S(t).

Assume individuals who are not infected are susceptible:

I(t) + S(t) = N = constant.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology



Epidemic Modelling Intro Constructing a model (cont.) 28/120

New model parameter(s)?

B = average number of contacts with susceptible individuals
that lead to a new infective per unit time per infective
In the näıve model, we assumed B = constant.
Is B really constant?
B depends on how many susceptibles there are.
B = βS(t)
β = average number of contacts between susceptibles and
infectives that lead to a new infective

per unit time
per infective
per susceptible

β is called the transmission rate.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Revised epidemic model: “SI model”

dI
dt = βS(t)I(t)

Two state variables. One equation. Problem? No:

dS
dt = −βS(t)I(t)

But S(t) = N − I(t) =⇒ I(t) is still the only variable:

dI
dt = βI(N − I)

Is this a better model?
What does it predict?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SI model: Example solution
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SI model: Analysis

We can find the exact solution. How?

I(t) = I0eNβt

1 + (I0/N)(eNβt − 1)
But exact solution is not particularly enlightening.

Qualitative analysis:
Initially I � N. What does the model predict then?
Exponential growth. Great!
As I grows, growth rate slows. Why?
Fewer and fewer susceptibles to infect.
Asymptotic behaviour? Equilibria? Periodic orbits?
(periodic orbit = recurrent epidemics)
(Non-trivial) periodic orbits impossible in one dimension
(existence-uniqueness theorem).
Consider equilibria. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SI model: Equilibrium Analysis

dI
dt = βI(N − I) , I ∈ [0,N]

Two equilibria:
I = 0 Disease Free Equilibrium (DFE)
I = N Endemic Equilibrium (EE)

Stability:
DFE is unstable (0 < I < N =⇒ dI/dt > 0)
EE is locally asymptotically stable (LAS)
EE is globally asymptotically stable (GAS)
(stability of EE follows from 0 < I < N =⇒ dI/dt > 0)
(GAS requires a little more analysis. . . )
Note: In one dimension, global analysis always easy.
In higher dimensions, often try to find Lyapunov function.
(Lyapunov function for EE of SI model?. . . )

Conclusions identical for any β > 0.
Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SI model: Biological Inferences

For any transmission rate β:
Initially, exponential growth of cases.
Eventually, convergence to equilibrium (EE) at which
everyone in the population is infective. hmmm. . .

Is this model better than our first näıve model?
YES.

Still correctly predict initial exponential growth.
Can match epidemic curve for longer (up to the peak).
Does not predict absurd unbounded growth in infective
population.
But this model cannot explain the decline of the epidemic.

What should we do? Two obvious options:
1 Get depressed, drop the course.
2 Try to improve the model.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Recall motivating data: 1918 flu in Philadelphia

Mortality curve (linear scale)

Mortality curve (log scale)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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How can we improve on the SI model?

Include a key biological fact:
Individuals do not stay infectious with flu forever

Either they recover and are immune thereafter, or they die
(doesn’t matter which) (well, maybe to them it does)

Why don’t we care if someone recovers or dies?
(i.e., Why doesn’t it affect our dynamical inferences?)

Because in either case the individual is removed from the
transmission process, hence cannot affect the future pattern
of the epidemic.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model
Introduce new class of removed individuals:

R(t) = number of individuals who have either recovered and
are now immune or have died
Let γ = rate of removal from the infective class (via recovery
or death)

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Note: dS
dt + dI

dt + dR
dt = 0 =⇒ S + I + R = N = constant

Convenient to rescale variables by N and interpret S, I,R as
proportions of the population in each disease state.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Example numerical solution
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γ = 1

Looks promising. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Flow Chart and Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Parameters:
Transmission rate β

Recovery rate γ

(or Removal rate)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Derived Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Derived Parameters:

Initial growth rate β − γ
Mean infectious period 1

γ

Basic Reproduction
Number

R0 = β

γ

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Derived parameters

The initial growth rate
How do we calculate the initial growth rate from our
model?
Consider change in prevalence initially (when I � 1):

dI
dt = βSI − γI

=
(
βS − γ

)
I

≈
(
β − γ

)
I if S ∼ 1 initially.

∴ Initially I(t) ≈ I0e(β−γ)t .
∴ Initial slope of logged prevalence curve is β − γ.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Derived parameters

The mean infectious period
How do we calculate the mean infectious period from our
model?
Suppose at time 0 there are I0 infectious individuals, and
suppose we can prevent contact with susceptibles.
The equation for I then simplifies to

dI
dt = −γI , I(0) = I0

We can solve this immediately to find

I(t) = I0e−γt

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Derived parameters

The mean infectious period, continued. . .
Thus, after time t, the number of people still infectious is
reduced by a factor e−γt

i.e., the proportion of individuals who have an infectious
period shorter than t is 1− e−γt

i.e., the cumulative distribution of the infectious period is
C(t) = 1− e−γt .

Therefore, the probability density of the infectious period
is p(t) = C ′(t) = d

dt

(
1− e−γt

)
= γe−γt

The mean of this exponential probability distribution is∫∞
0 t p(t) dt =

∫∞
0 t γe−γt dt = 1

γ

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Derived parameters

The basic reproduction number R0

R0 = β · 1
γ

= (transmission rate)
× (mean infectious period)

R0 is dimensionless

R0 is the average number of secondary cases caused by a
primary case (in a wholly susceptible population).

We must have R0 > 1 to have an epidemic. Why?
dI
dt = βSI − γI =

(
R0S − 1

)
γI

∴ R0 ≤ 1 =⇒ dI
dt ≤ 0 for all (S, I) ∈ [0, 1]2 =⇒ no growth

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis (biological well-posedness)

dS
dt = −βSI

dI
dt = βSI − γI

Be careful:
Is this a sensible
biological
model?

We need S, I and R all non-negative
at all times.

Does 0 ≤ S(0) + I(0) ≤ 1 imply
0 ≤ S(t) + I(t) ≤ 1 for all t > 0?

S = 0 =⇒ S ′ = 0, so
S(0) ≥ 0 =⇒ S(t) ≥ 0 ∀t > 0.

I = 0 =⇒ I ′ = 0, so
I(0) ≥ 0 =⇒ I(t) ≥ 0 ∀t > 0.

(S + I)′ = S ′ + I ′ = −γI ≤ 0
=⇒ S + I is always non-increasing
=⇒ S(t) + I(t) ≤ S(0) + I(0) ≤ 1.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis (equilibria etc.)

dS
dt = −βSI

dI
dt = βSI − γI

Equilibria:
(S, I) = (S0, 0) for
any S0 ∈ [0, 1]

Continuum of
equilibria.
Does this
make sense?
Biological
meaning of
equilibria?

Linearization:
DF(S,I) =

(
−βI −βS
βI βS − γ

)

DF(S0,0) =
(

0 −βS0
0 βS0 − γ

)
All equilibria are non-hyperbolic.

Periodic orbits:
(S + I)′ = −γI
=⇒ no periodic orbits. Why?

If I(0) = 0 then equilibrium.
If I(0) > 0 then (S + I)′ < 0, so
cannot increase back to initial
state.

Also follows from Index Theorem
(cannot enclose any equilibria).

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology

http://lalashan.mcmaster.ca/theobio/3F03/images/3/30/3fl32_2013.pdf
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Recap what we’ve done so far. . .

Began analysis of standard SIR model.

Showed SIR model:
is biologically well-posed
has a continuum of (disease-free) equilibria, all of which are
non-hyperbolic
does not have any periodic solutions

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis

dS
dt = −βSI

dI
dt = βSI − γI

Nullclines:

S ′ = 0 =⇒ S = 0 or I = 0
S nullclines: both coordinate axes

I ′ = 0 =⇒ I = 0 or S = γ/β

I nullclines: S axis and vertical line
at S = 1/R0

Is the I nullcline at S = 1/R0 always
relevant?

If, and only if, R0 > 1.
If R0 < 1 then S = 1/R0 is
outside the biologically relevant
region of the (S, I) phase plane.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis

dS
dt = −βSI

dI
dt = βSI − γI

Nullclines and Direction Field (R0 = 4):

S

I S = γ
β = 1

R0

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis

dS
dt = −βSI

dI
dt = βSI − γI

Phase Portrait:
We cannot find
solutions S(t) and
I(t) for this system.
We can find exact
analytical solution for
the phase portrait!

i.e., we can find an expression I(S) for
solution curves in the (S, I) phase plane.
Slope of I(S) depends only on S:

dI
dS = dI/dt

dS/dt = − 1 + 1
R0S (∗)

Note: Slope is flat for S = 1/R0, so max
or min of I(S) occurs on I nullcline if
R0 > 1
Easy to integrate (∗):∫ I

I0 dI =
∫ S

S0

(
−1 + 1

R0S

)
dS

I − I0 = −(S − S0) + 1
R0

log (S/S0)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis

Model Equations:

dS
dt = −βSI

dI
dt = βSI − γI

Solution Curves in
Phase Plane:

I + S − (I0 + S0)

= 1
R0

log (S/S0)

Phase Portrait (R0 = 4):

S

I S = γ
β = 1

R0

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis

Model Equations:

dS
dt = −βSI

dI
dt = βSI − γI

Solution Curves in
Phase Plane:

I + S − (I0 + S0)

= 1
R0

log (S/S0)

Final Size of Epidemic:
As t →∞ we have
(I∞ + S∞)− (I0 + S0) = 1

R0
log S∞/S0

But for a newly invading pathogen:
S0 ' 1, I0 ' 0, I∞ = 0
In the limit I0 → 0, we have
(S∞ − 1) = 1

R0
log S∞

Define “Final Size” Z = 1− S∞
∴ −Z = 1

R0
log (1− Z ), i.e.,

Z = 1− e−R0Z

This is a famous formula, derived by
Kermack and McKendrick in 1927.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Analysis

Final Size Formula:

Z = 1− e−R0Z

Final size is
determined entirely
by R0

Final size is never the
whole population
(Z < 1)
Formula is valid for
much more realistic
models (Ma & Earn,
2006)
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Basic Reproduction Number R0

For 1918 flu: 1.5 . R0 . 2
Proportion of world population
infected?
∼ 60–80%

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology

https://davidearn.mcmaster.ca/publications/MaEarn2006
https://davidearn.mcmaster.ca/publications/MaEarn2006
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From Final Size to Reproduction Number

The final size relation allows us to estimate the proportion of
the population that will be infected given an estimate of R0.

But we can turn it around: if we know the final size Z then
we can easily estimate R0:

Z = 1− e−R0Z =⇒ R0 = − 1
Z log (1− Z )

This is useful post-hoc only (after an epidemic).

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Non-dimensionalization

Often helpful to use dimensionless parameters.
How do we identify “the right” dimensionless parameters?
β
γ ? γ

β ? β
β+γ ? β2

β2+γ2 ?
We choose β/γ because it has a natural interpretation.
But we are still left with γ as a second parameter.
Can we simplify the model somehow?
γ defines a time scale (1/γ is the mean infectious period).
If time unit is mean infectious period, then γ = 1.
So in these “natural” time units, the SIR model is

dS
dt = −R0SI, dI

dt = R0SI − I

There is really only one parameter in the model. The other is
just a time scale and does not affect the qualitative dynamics.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Results so far

Mathematical Results:
Model is biologically well-posed

0 ≤ S(0) + I(0) ≤ 1 =⇒ 0 ≤ S(t) + I(t) ≤ 1 ∀t > 0
No periodic orbits.
Continuum of equilibria.
Stability of equilibria:

Linearization useless (all equilibria non-hyperbolic).
Further analysis necessary.

Exact solution for phase portrait:
I(S) = I0 + (S0 − S) + 1

R0
log (S/S0)

Final size formula: Z = 1− e−R0Z

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Stability of equilibria

Phase Portrait (R0 = 4):

S

I S = γ
β = 1

R0

Model Equations:

dS
dt = −βSI, dI

dt = βSI − γI

Which equilibria are:
Unstable?

S0 > 1/R0

Stable?
S0 ≤ 1/R0

Asymptotically stable?
None!

How do we prove these
facts?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Effects of Control Measures

How could the final size of the 1918 pandemic have been
reduced?

Any intervention that reduces R0 reduces the final size.

What could have been done to reduce R0?

Masks? Quarantine? Isolation?

Ideally a vaccine, but no such luck in 1918.

Even in 2009, it took months to mass-produce vaccine.

But suppose there had been a vaccine immediately. . .

What proportion (p) of the population do we need to
vaccinate to eradicate an infectious disease?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Effects of Control Measures
Suppose a proportion (p) of the population is vaccinated before an
epidemic starts. Then:

At the start of the epidemic, the proportion of the population
that is susceptible is S0 = 1− p.
∴ Initially (at time t = 0) the rate of change of prevalence is

dI
dt

∣∣∣∣
t=0

=
((
R0S − 1

)
I
)∣∣∣

t=0
=
(
R0S0 − 1

)
I0

=
(
R0(1− p)− 1

)
I0 < 0 ⇐⇒ R0(1− p) < 1

∴ An epidemic will be prevented if

p > pcrit = 1− 1
R0

∴ Public Health Agency will ask you to estimate R0.
Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Results so far

Biological inferences:

R0 is extremely important to estimate in practice!

Epidemic occurs if and only if R0 > 1.

Single epidemic, then disease disappears.

Can prevent epidemic by vaccinating (or otherwise removing)
a proportion 1− 1

R0
from the transmission process.

Note: It doesn’t matter whether we remove people from the susceptible pool by
vaccination, isolation, or other means. What matters is the proportion of the

population who are removed from the transmission process.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Does it explain our data?

What about 1918 flu in Philadelphia?

Sep Oct Nov Dec

0

200

400

600

800

P&I Deaths

Date

Does the SIR model explain these data?
Can we fit the SIR model to the P&I time series?
If so, are our estimated parameter values (for R0 and 1/γ)
biologically reasonable?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: How solutions depend on R0

0 2 4 6 8
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Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: prevalence vs. incidence
In the SIR model as we have defined it, prevalence is I(t) and
incidence is i(t) = βS(t)I(t) ,
so we can compute incidence i(t) from solutions to the SIR model,
and then compare predicted incidence with observed reports of cases
or deaths.
Could we have derived an equally sensible model starting from the
closer-to-observable quantity (incidence i) ?
The answer is YES,

dS
dt = −i(t) , (1a)

i(t) = R0 S(t)
∫ ∞

0
i(t − s) g(s) ds , (1b)

where g(s) is the generation interval distribution.
How do solutions of this integro-differential equation differ from
those of the SIR model as we have defined it?

If you are curious, see Champredon, Dushoff & Earn 2018.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology

https://davidearn.mcmaster.ca/publications/ChampredonEtAl2018
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Mathematics 747 / 5GT3
Topics in Mathematical Biology

Instructor: David Earn

Lecture 2
Epidemic Modelling Intro 2

Thursday 24 September 2020

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Daily SARS-CoV-2 in 2020 (Worldwide)

Jan Mar May Jul Sep

0

50000

100000

150000

200000

250000

300000

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Daily SARS-CoV-2 (Worldwide) exponential growth fits

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2020

5 × 102

103

2 × 103

5 × 103

104

2 × 104

5 × 104

105

2 × 105

N
ew

 c
on

fir
m

at
io

ns Doubling Time

Jan−Feb:   ~6 days
March:       ~5 days
May−July: ~45 days
Sep−Oct: ~160 days

2020−10−08

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Mechanistic Epidemic Modelling: Principles

Consider the biological mechanisms involved in disease
transmission and spread
Model mechanisms and infer their effects
Start as simple as possible!
Rule out simple models by comparing results with observed
time series of incidence or mortality
Add complexity one step at a time, so key mechanisms can be
identified
Ideally converge on simplest possible model that can explain
observed patterns

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Flow Chart and Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Parameters:
Transmission rate β

Recovery rate γ

(or Removal rate)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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The SIR model: Derived Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Derived Parameters:

Initial growth rate β − γ
Mean infectious period 1

γ

Basic Reproduction
Number

R0 = β

γ

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Basic SIR Model: Important Results

Epidemic occurs if and only if R0 > 1
Exact solution for phase portrait
Single epidemic, then disease disappears
Exact formula for final size as a function of R0

Cannot explain diseases that persist
Cannot explain recurrent cycles of epidemics

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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What are we missing?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR Model: flow chart

Introduces only one new parameter (σ)
Mean latent period (1/σ) can often be estimated
Potentially important if there is a long latent period
But. . . we still get only a single epidemic. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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What are we still missing?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR Model with vital dynamics: flow chart

New Parameters:
Birth rate (ν for natality)
Death rate (µ for mortality)
Mean latent period (1/σ)
What if we have a vaccine?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology



Epidemic Modelling Intro 2 Mechanistic Modelling 74/120

SEIR with vital dynamics and vaccination: flow chart

New Parameters:
Birth rate (ν for natality)
Death rate (µ for mortality)
Mean latent period (1/σ)
Proportion vaccinated (p)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR with vital dynamics and vaccination: Equations

dS
dt = ν(1− p)− βSI − µS

dE
dt = βSI − σE − µE

dI
dt = σE − γI − µI

dR
dt = νp + γI − µR

Birth rate (ν for natality)
Death rate (µ for mortality)
Proportion vaccinated (p)

Transmission rate (β)
Mean latent period (1/σ)
Mean infectious period (1/γ)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR with vital dynamics and vaccination: Analysis

R0 ?

Biological derivation: (assuming ν = µ and p = 0)

R0 =
(

Transmission
rate

)
×
(

Probability of
surviving latency

)
×
(

Mean time
infectious

)

= β × σ

σ + µ
× 1

γ + µ

' β

γ
∵

1
µ
� max

( 1
σ
,

1
γ

)
Mathematical derivation:
R0 = 1 is stability boundary

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR with vital dynamics and vaccination: Analysis

Final size ?
If ν = µ = 0: same formula as for SIR model
Otherwise: not well defined (∵ continuous source of new
susceptibles)

Equilibria ?
Disease Free Equilibrium (DFE): (S = 1,E = 0, I = 0)
Endemic Equilibrium (EE):

(
Ŝ = 1

R0
, Ê > 0, Î > 0

)
That’s all folks.

Periodic solutions ? No.

What else ? Chaos?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR with vital dynamics and vaccination: Results

∃ Endemic Equilibrium ⇐⇒ R0(1− p) > 1
EE is GAS in this case.
DFE is GAS otherwise.

Eradication ⇐⇒ p > 1− 1
R0

(herd immunity)
Smallpox: R0 ∼ 4 =⇒ pcrit ∼ 75%
Measles: R0 ∼ 20 =⇒ pcrit ∼ 95%
Covid-19: R0 ∼ 3 =⇒ pcrit ∼ 66%

Explains persistence of diseases (via births)

No periodic solutions ?=⇒ no recurrent epidemics
GAS equilibrium =⇒ no periodic solutions and no chaos
Equilibrium approached by damped oscillations
=⇒ recurrent epidemics

But typical epidemic patterns of persistent diseases show
undamped oscillations. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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20th century measles epidemics in England and Wales
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Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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20th century measles epidemics in England and Wales
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20th century measles epidemics in England and Wales
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Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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What are we STILL missing?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Demographic Stochasticity

Differential equations describe the expected behaviour in the
limit that the population size goes to infinity
How do dynamics differ in finite populations?
Re-cast the SEIR model as a stochastic process
(Continuous time Markov process)
Proving anything about stochastic epidemic models is
difficult, but we can easily simulate them and learn a lot
Standard algorithm for creating realizations of a stochastic
epidemic model attributed to Daniel T. Gillespie

Gillespie 1976, J. Comp. Phys. 22, 403–434

Rather than rates of change of compartment sizes
consider event rates for transitions between disease states
Finite number of individuals
Assume event rates depend only on current state of population

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Gillespie Algorithm
Let a1, a2, . . . , be the rates at which the various processes
occur, e.g.,

a1 = birth rate,
a2 = rate of going from susceptible to exposed,
a3 = the rate of going from infectious to removed (recovering),
etc.

Let a0 be the overall event rate, i.e., a0 =
∑

i ai
(so average time between events = 1/a0).
Assume time spent in any state is exponentially distributed
(transitions between states are “Poisson processes”)
∴ Probability next event occurs in (t, t + dt) is a0e−a0tdt
Let u = 1− e−a0t . Then u ∈ [0, 1] and du = a0e−a0tdt
=⇒ u is uniformly distributed in [0, 1].
∴ Get time t to next event by sampling u from uniform
distribution in [0, 1] and setting t = 1

a0
ln 1

1−u .
Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology

https://en.wikipedia.org/wiki/Poisson_point_process#Interpreted_as_a_counting_process
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Gillespie Algorithm continued

We now know the time t of the next event, but we must still
determine what type of event occurs at time t.
Probability of event of type i is ai

a0
∴ Can easily determine type of event by sampling a point
from a uniform distribution on [0, a0]:

Event is type i if the uniform deviate lies in the ith interval in
the following list:

[0, a1), [a1, a1 + a2), . . . , [a1 + · · ·+ ai−1, a1 + · · ·+ ai ), . . .

How do realizations of this process differ from the solution of
the deterministic (differential equation) model?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Gillespie Simulations: Results for Measles Parameters
R0 = 17, Tlat = 8 days, Tinf = 5 days, ν = µ = 0.02/year, N = 5, 000, 000

1 stochastic realization

30 stochastic realizations

Earn 2009, IAS/Park City Mathematics Series 14, 151–186

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Effects of Demographic Stochasticity

Sustains transient behaviour (oscillations do not damp out)
(Bartlett 1950’s)

Explains undamped oscillations at a single period

But, unable to explain changes in interepidemic period, or
irregularity (common in childhood diseases, e.g., measles,
whooping cough, rubella, . . . )

What other mechanisms might be important?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Transmission rate variation

Transmission rate β is not constant:
high during school terms, low in summer
For simplicity, model as a sine wave:

β(t) = 〈β〉
(
1 + α cos 2πt

)
〈β〉 = mean transmission rate
α = amplitude of seasonal variation in contact rate

Jan Apr Jul Oct Jan

β(
t)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Is this change significant?

We now have a forced nonlinear system

Forcing frequency can resonate with the natural timescales of
the disease (e.g., damping period)

Very rich dynamical system. . .
(analogy: forced pendulum)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Sinusoidal SEIR Model: Numerical Results

Stable cycles of various lengths
(annual, biennial, 3-year, . . . )

Multiple co-existing stable cycles

Chaotic dynamics

Lots of work on this model in 1980s and 1990s

Smith HL, 1983, J. Math. Biol. 17, 163–177

Schwartz IB, Smith HL, 1983, J. Math. Biol. 18, 233–253

Aron JL, Schwartz IB, 1984, J. theor. Biol. 110, 665-679

Olsen LF, Schaffer WM, 1990, Science 249, 499–504

. . .

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Sinusoidal SEIR Model: Rigorous Results

There exist parameter values such that infinitely many stable
cycles co-exist

Schwartz IB, Smith HL, 1983, J. Math. Biol. 18, 233–253

There exist chaotic repellors (in a modified SEIR model)
Glendinning P, Perry LP, 1997, J. Math. Biol. 35, 359–373

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Measles Bifurcation Diagram (Sinusoidal SEIR model)

Earn (2009) IAS/Park City Mathematics Series 14, 151–186

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Effects of transmission rate forcing

SEIR model with sinusoidal forcing:
Produces recurrent undamped epidemics of all frequencies
observed in measles time series.

Produces chaos, which can explain irregular behaviour and
transitions from one type of cycle to another

If correct, this implies these transitions are unpredictable.

Note: transmission rate (β) might be time-dependent for other
reasons, e.g., weather, social distancing, . . .

Functional form of β(t) will affect detailed patterns of
epidemics

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Sinusoidal forcing vs Term-time forcing

Jan Apr Jul Oct Jan

β(
t)

Jan Apr Jul Oct Jan

Term Term

Summer

Term

β(
t)

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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What else might affect transmission dynamics?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Is Age Structure Important?

Real system is not homogeneously mixed
Contact structure is age-dependent

Schenzle (1984) argued for creating a Realistically
Age-Structured (RAS) SEIR model

21 age classes (0–1, 1–2, . . . , 19–20, > 20)
SEIR compartments for each age class
Different contact rates between all these age classes

β(t) −→


β1,1(t) β1,2(t) · · · β1,21(t)
β2,1(t) β2,2(t) · · · β2,21(t)

...
...

. . .
...

β21,1(t) β21,2(t) · · · β21,21(t)


Schenzle D (1984) IMA Journal of Mathematics Applied in Medicine and Biology 1, 169–191

Lots of work on RAS models since Schenzle (1984)
Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Is Age Structure Important?

When is this additional structure important?

If you have an age-structured question then you need an
age-structured model.

e.g., Who should be vaccinated first?

But not clear the 84 ODEs in Schenzle’s model are necessary.

Fewer age classes =⇒ fewer parameters to estimate

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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How do we estimate R0?

For the basic SIR model, we can just estimate the initial
growth rate (β − γ) and the mean infectious period (1/γ),
and compute R0 = β/γ.

For the SEIR model with vital dynamics, we also need
estimates of

mean latent period (1/σ)
birth rate (µ)

What if our model is much more complicated?
(e.g., 84 ODEs!)

How do we figure this out more generally?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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What next?

R0 or ?

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Daily SARS-CoV-2 in 2020 (Worldwide)
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Daily SARS-CoV-2 (Worldwide) exponential growth fits
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Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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R0

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology



Epidemic Modelling Intro 3; R0 R0 104/120

R0: biological definition

The basic reproduction number R0 is:
the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective
individual

e.g., Anderson and May (1991) “Infectious Diseases of Humans”

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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R0: more mathematical definition

The basic reproduction number R0 is:
the number of new infections produced by a typical infec-
tive individual in a population at a disease free equilibrium
(DFE)

van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29–48

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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R0: most mathematical definition

The basic reproduction number R0 is:
the spectral radius of the next generation operator at a
disease free equilibrium (DFE)

Diekmann, Heesterbeek & Metz (1990) J. Math. Biol. 28, 365–382

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Definitions from matrix analysis

Definition (Spectrum of a matrix)

Let M be an n × n real (or complex) matrix. The spectrum of M
is

σ(M) = {λ : Mv = λv for some non-zero v ∈ Cn} ,

i.e., σ(M) is the set of eigenvalues of M.

Definition (Spectral radius of a matrix)

Let M be an n × n real (or complex) matrix. The spectral radius
of M is

ρ(M) = max{|λ| : λ ∈ σ(M)} ,

i.e., ρ(M) is the maximum modulus of the eigenvalues of M.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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Computing R0

In very simple models, R0 is the product of the transmission rate
and the mean time in the infectious class. e.g., In the SIR model
with vital dynamics,

R0 = β · 1
γ + µ

.

When there are multiple infected classes, it is more complicated to
compute R0.
In the SEIR model, we found (based on a biological argument) that

R0 = β · σ

σ + µ
· 1
γ + µ

.

Mathematically, the spectral radius of the next generation operator
at the DFE is exactly this quantity. With this definition, it is also
true that the disease persists if R0 > 1 and goes extinct if R0 < 1.

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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SEIR model (with vital dynamics)

dS
dt = µN − βSI

N − µS

dE
dt = βSI

N − σE − µE

dI
dt = σE − γI − µI

dR
dt = γI − µR

Birth and death rate (µ)

Transmission rate (β)

Mean latent period (1/σ)

Mean infectious period (1/γ)
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Next generation matrix for the SEIR model

Consider flows in and out of the infected compartments, and
highlight flows that correspond to new infections:

d
dt

(
E
I

)
=
(
βSI − σE − µE
σE − γI − µI

)

F = inflow of new infecteds
to infected compartments =

(
βSI

0

)

V = outflow from infected compartments
minus inflow of non-new infecteds =

(
σE + µE

−σE + γI + µI

)

Let F = linearization of F at DFE
Let V = linearization of V at DFE
Then the next generation matrix is F V−1

Analogous to βγ−1 in simple case.
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Interpretation of FV−1 as next generation matrix
Almost verbatim from p. 33 of van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29–48

To interpret the entries of F V−1 and develop a meaningful
definition of R0, consider the fate of an infected individual
introduced into compartment k of a disease free population.
The (j , k) entry of V−1 is the average length of time this individual
spends in compartment j during its lifetime, assuming that the
population remains near the DFE and barring reinfection.
The (i , j) entry of F is the rate at which infected individuals in
compartment j produce new infections in compartment i .
Hence, the (i , k) entry of the product F V−1 is the expected number
of new infections in compartment i produced by the infected
individual originally introduced into compartment k.
Following Diekmann et al. (1990), we call F V−1 the next
generation matrix for the model and set

R0 = ρ(F V−1) ,

where ρ(A) denotes the spectral radius of a matrix A.
Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology
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R0 via FV−1 for the SEIR model

F =
(
βSI

0

)
V =

(
σE + µE

−σE + γI + µI

)

F =
(

0 β
0 0

)
V =

(
(σ + µ) 0
−σ (γ + µ)

)

V−1 =
( 1

σ+µ 0
σ

(σ+µ)(γ+µ)
1

γ+µ

)
=⇒ F V−1 =

(
βσ

(σ+µ)(γ+µ)
β

γ+µ

0 0

)

R0 = ρ(FV−1) = βσ/(σ + µ)(γ + µ)
Note wrt previous slide that the (2, 1) entry of V−1 is the average
time an individual who enters the E compartment spends in the I
compartment: only a proportion σ/(σ + µ) of such individuals make
it to the I compartment, where the average time spent—by
individuals who get there—is 1/(γ + µ).
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Computing R0 for other compartmental ODE models

The method applied in the previous slides to obtain R0 for the SEIR
model works more generally for a very large class of “reasonable”
infectious disease ODE models. “Reasonable” means:

1 The vector field can be written F − V, where F ≥ 0 corresponds to
new infections and V can be written V = V+ − V−, where V+ ≥ 0
corresponds to outflow and V− ≥ 0 corresponds to
inflow of infectives that are not new.

2 The biologically relevant part of the state space is forward-invariant.
In particular, if a compartment is empty, then there can be no
transfer of individuals out of the compartment by death, infection,
nor any other means.

3 The DFE is stable in the absence of new infection (if there is more
than one DFE, R0 may depend on which one we focus on).

4 The population size N is constant (or the model is expressed in
terms of proportions in each compartment).
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Computing R0 for other compartmental ODE models

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model
satisfies the conditions specified on the previous slide, then

1 R0 can be computed as ρ(FV−1).

If, moreover, zero is a simple eigenvalue of the Jacobian matrix of
the vector field at the disease-free equilibrium (DFE) when
R0 = 1, then

2 if R0 < 1 then the DFE is locally asymptotically stable (LAS),
whereas if R0 > 1 then there is a LAS endemic equilibrium
(EE).

Note: For the SIR model, the eigenvalues of the Jacobian at (S, I) = (1, 0) are
−µ and β − (γ + µ), which are both zero if µ = 0 and R0 = 1.
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R0 calculation: summary

The biological method of deriving R0 is generally more
informative in terms of what is going on. But it can be
challenging to apply to complex models.

The formal approach, i.e., R0 = ρ(FV−1), works in almost
any situation you will encounter, even very complicated
models with many compartments.

If possible, it is best to use both methods to find an
expression for R0, and make sure they agree.

A completely different challenge is to estimate R0 for a real
epidemic from data. . .
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Estimating R0 based on the SEIR model
If the SEIR model captures the natural history of some disease
well, how can you estimate R0 = βσ

(σ + µ)(γ + µ) ?

Mean latent period 1/σ
Mean infectious period 1/γ
Birth rate µ
Estimate β via initial growth rate r :

For the simplest SIR model, r = β − γ so β = r + γ.

More generally, r is the largest positive (or least negative) real
part of the eigenvalues of F − V .

For SEIR model we find:

r = 1
2

(√
4βσ + (γ − σ)2 −

(
γ + σ + 2µ

))

Solving this for β we obtain: β = (r + σ + µ)(r + γ + µ)
σ

Instructor: David Earn Mathematics 747 / 5GT3 Topics in Mathematical Biology



Epidemic Modelling Intro 3; R0 No model, just data 117/120

Estimating R0 directly from epidemic data

So far, our approach to estimating R0 has been:
specify an epidemiological model, e.g., SIR, SEIR, etc.
estimate the initial exponential growth rate r
estimate other model parameters via stage duration
distributions (latent period, infectious period, . . . )

can estimate these by studying course of infection in many
individuals

use expression for R0 in terms of other parameters

Can we avoid committing to a specific epidemic model?
Yes, using contact tracing data (if available!)
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From r to R0 via generation interval (GI) distribution

The generation interval (GI) is the difference between the
time when an individual is infected by an infector and the time
when this infector was infected.

Champredon and Dushoff 2015, Proc. R. Soc. B 282:20152026

The distribution of the GI (denoted g) depends on the natural
history of infection (e.g., latent period distribution, infectious
period distribution, . . . ).
There is a very general relationship between the initial growth
rate r , the GI distribution g , and the basic reproduction
number R0.

Wallinga and Lipsitch 2007, Proc. R. Soc. B 274:599–604
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From r to R0 via generation interval (GI) distribution

During initial growth phase, incidence i(t) ∼ ert , so the renewal
equation implies

1
R0

=
∫ ∞

0

e−rsg(s) ds

Wallinga and Lipsitch 2007, Proc. R. Soc. B 274:599–604

1/R0 is Laplace transform of GI distribution g(t)
If we can estimate r and g(t) then we can estimate R0

Estimating the GI distribution g(t) is tricky
Champredon and Dushoff 2015, Proc. R. Soc. B 282:20152026

Park et al 2020, medRxiv 10.1101/2020.06.04.20122713v1
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