
Mathematics 747 / 5GT3 Topics in Mathematical Biology

http://davidearn.github.io/tmb2020

Fall 2020 ASSIGNMENT 1

This assignment is due before class on Thursday 5 November 2020.

The purpose of this assignment is for you to learn to use the epigrowthfit package,
and estimate growth rates for COVID-19 in Canada during the current pandemic. Your
submission should be written as if it were a report to the Public Health Agency of Canada
(PHAC). Begin with a brief Executive Summary, and then provide the details of your anal-
ysis. Your submission should ideally be written using knitr (the alternative is LATEX and
separate scripts), and must be submitted as a tarball or zipped folder that can be run to
reproduce your final pdf. Read this entire document, including all the technical comments
at the end before starting to work on the assignment.

1 Install epigrowthfit package

epigrowthfit can be installed from a GitHub repository using function install_github()

from the remotes package.

if (!require(remotes)) {
install.packages("remotes")

}
remotes::install_github("davidearn/epigrowthfit",

ref = "devel",

dependencies = TRUE,

build_vignettes = TRUE

)

library(epigrowthfit)

2 Familiarize yourself with epigrowthfit

Read the package vignette, which you can access via:

vignette("epigrowthfit-vignette")

The epigrowthfit package was recently rewritten from scratch by Mikael Jagan. If you
have questions or comments about any aspect of the package (or the vignette), please e-mail
both me and Mikael using this link.

Page 1 of 8

http://davidearn.github.io/tmb2020
https://github.com/davidearn/epigrowthfit/
mailto:Mikael%20Jagan%20<jaganmn2@gmail.com>,%20David%20Earn%20<earn@math.mcmaster.ca>?subject=Math%20747:%20epigrowthfit%20
mailto:Mikael%20Jagan%20<jaganmn2@gmail.com>,%20David%20Earn%20<earn@math.mcmaster.ca>?subject=Math%20747:%20epigrowthfit%20

3 Download clean COVID-19 data for Canadian provinces

Have a look at Mike Li’s COVID19-Canada web site and download the latest version of his
cleaned data. If you wish, you can download the file from via:

mike.li.covid.site <- "https://wzmli.github.io/COVID19-Canada/"

covid.canada.filename <- "COVID19_Canada.csv"

download.file(paste0(mike.li.covid.site,covid.canada.filename), covid.canada.filename)

4 Fit growth of COVID-19 in Canadian provinces

Imagine that you have just been seconded to PHAC for the duration of the COVID-19
pandemic. Your first task is to compare the doubling times and effective reproduction
numbers in the exponential growth phase of each of the two epidemic waves (i.e., the initial
wave and the current wave). PHAC wants you to estimate each of the following for each
province and each wave:

1. exponential growth rate

2. doubling time

3. reproduction number

Construct a table with your estimates of each of these quantities for each province in each
wave. Also show graphs illustrating your fits. For example, for Ontario your graph might
look something like Fig. 1.

Interpret your results, considering the following questions:

• Why are some fits better than others?

• How do the results differ among provinces?

• Why do you think they differ?

• Are there policy implications of your results that PHAC should consider?

• What are the most important take-home messages for PHAC?

5 Feedback on epigrowthfit

Please provide any comments or criticisms you have about the epigrowthfit package so we
can improve it.

Page 2 of 8

https://wzmli.github.io/COVID19-Canada/

Mar Apr May Jun Jul Aug Sep Oct

2020

100

101

102

103

date

D
ai

ly
 r

ep
or

te
d

ca
se

s

Ontario COVID−19 confirmed cases

doubling time:
4.2 days

doubling time:
13 days

Figure 1: epigrowthfit fits for each wave of the COVID-19 epidemic in Ontario, Canada.

Page 3 of 8

6 Technical Comments (read carefully!)

The comments below apply to all work in this course.

1. Change the default font size from 10 point to 12 point. The default font size is set in
the first line of your LATEX document: \documentclass[12pt]{article}.

2. The LATEX preamble used for assignments in this course can be downloaded from the
Assignments page on the course web site. You should \input{4mbapreamble.tex}

in the preamble of your assignment (i.e., between \documentclass[12pt]{article}

and \begin{document}). This file addresses the following issues and many others:

• You will need to keep referring to R0 in your solutions. To make your life easier,
define a new \R command like so:

\newcommand{\R}{{\mathcal R}}

Then if you type \R_0 in your LATEX source file you will get R0 in your pdf

output.

• Please use the logo to refer to the R language. Do this by defining this as an
\Rlogo macro in your LATEX preamble like so:

\usepackage{xspace}

\newcommand{\Rlogo}{\protect\includegraphics[height=2ex,keepaspectratio]

{images/Rlogo.pdf}\xspace}

Note that you will also need the image file Rlogo.pdf, which can be downloaded
from the Assignments page on the course web site. Place Rlogo.pdf in an images

subfolder of the folder where your script lives.

• Define a comment macro as follows:

\usepackage{color}

\newcommand{\de}[1]{{\color{red}{\bfseries DE:} #1}}

This macro allows me to add comments easily in your LATEX document. For
example, the LATEX code \de{What a great idea!} yields DE: What a great
idea!

3. Good notation is important for making your documents easily comprehensible. Given
the LATEX definitions of \R and \Rlogo above, it is easy to distinguish the removed
class (R), the reproduction number (R) and the programming language (). Always
do this! Not doing so is sloppy and confusing to readers of your work. Also pay close
attention to any other potentially confusing notational issues.

4. Run your source file(s) through a spell checker. Don’t submit work that has typos or
spelling errors. There is information about spell-checkers that work with LATEX on the
Software page of the course web site.

Page 4 of 8

https://davidearn.github.io/tmb2020/assignments/
https://davidearn.github.io/math4mb/assignments/
https://davidearn.github.io/tmb2020/software.html

5. File and folder names: Please avoid spaces and non-alphanumeric characters in file
names and folder names (e.g., do not use \, &, #, !, ^, %, $, * or brackets, though
the underscore _ is fine). For example, instead of naming an script

My Math 747 Assignment #1 Question 2(b).R

choose the file name to be something like

MyName_Math747_A1_2b.R

A sensible filename for a LATEX document that contains your submission for Assignment
1 would be

MyName_Math747_A1.tex

and a sensible name for the folder that contains all files for the assignment would be

MyName_Math747_A1

6. Do not include any absolute file paths in your code. For example, you should not refer
to C:\MyName\Documents\MyFavoriteCourse\datafile.csv in your code. Keep files
you need to read in a subfolder of the folder where you are executing your scripts.
Make sure anyone can produce the final pdf file without altering any of the files in any
way.

7. LATEX needs you to use single opening and closing quotes. A double quote (") is always
interpretted as a closing double quote (”). Thus, if you say "quoted words" you get
”quoted words”, whereas ``quoted words'' yields “quoted words”.

8. Always use math mode to typeset math. For example: f(x) yields f(x) whereas $f(x)$
yields f(x).

9. Use typewriter type when referring to filenames. For example, {\tt filename.R}

yields filename.R. (An alternative is \texttt{filename.R}.)

10. When including images in a LATEX document, it is best to save the images from as
pdf. If you save as png or jpg then LATEX will still be happy to display them, but the
quality of the image is reduced unnecessarily.

11. The LATEX command for the “much less than” symbol is \ll. Don’t use << for this.
For example: $a<<b$ yields a << b whereas $a\ll b$ yields a � b. In general,
if you typeset some math and it doesn’t look like what you would expect to see in a
professionally typeset math book then you can be certain you’re not using the intended
LATEX syntax.

12. Always use LATEX’s built-in function names, e.g., $\log(t)$ correctly yields log(t)
whereas $log(t)$ yields log(t).

Page 5 of 8

13. Avoid explicit spacing commands in LATEX if possible. For example, if you want to have
space between each paragraph of your document, then don’t include an extra line break
at the end of each paragraph (which could be done via \\). A better approach is to
set the value of the paragraph skip in the preamble (via \parskip=10pt, for example).
Then you can change the spacing easily in the entire document, and if you later want
to use a different format then there won’t be explicit spacing commands lurking around
to wreck your output. Even setting the \parskip explicitly is considered undesirable
by LATEX aficionados, because it will override directives in a LATEX style file; in any
case, if you can keep formatting changes to the preamble, it will make your life simpler.

14. Every script should begin with an opening comment explaining what the script
does. What is the purpose of the script? What output will be produced when it is
run?

15. Take advantage of ’s vector syntax wherever convenient. For example, if setting line
styles for a sequence of lines in a plot or legend, rather than lty=c(1, 2, 3, 4, 5, 6)

say lty=1:6.

16. Wherever appropriate, use ’s assignment operator (<-) rather than equals (=).

17. Your LATEX code must compile without any errors. Producing a pdf file is not adequate.
Others must be able to reproduce the pdf without getting any or LATEX errors.

18. To make your code readable, it is very important that you indent appropriately. If
you are using Emacs then tab will indent the current line of code according to standard
convention.

19. Make sure figures appear where you want them. The figure environment has options
that allow you to control placement in the document.

20. Explain your logic in computer code using embedded comments. The comment char-
acter in LATEX %. The comment character in is #.

21. Any graphics must be created in . Once you get the hang of it, the easiest way to
combine with LATEX is to use the knitr package. You are encouraged to use knitr,
but if you prefer you can create graphics separately and input them as pdf files into
LATEX. (Note that you will be required to use knitr for the final project.)

22. A note on importing graphics into LATEX: When you run an script in RStudio,
any plots are shown by default in the bottom right pane of the RStudio window. When
you are developing the code to make a plot, that is usually what you want. But in
order to get the plot into a LATEX document you must save the plot as a pdf file instead.
In order to save a plot into the file mylovelyplot.pdf, do the following

pdf("mylovelyplot.pdf")

INSERT PLOTTING CODE HERE

dev.off()

Page 6 of 8

The pdf() command changes the graphics output device to the named pdf file. This
command has various optional arguments, such as width and height, which you may
well want to use (rather than accepting the default width and height). The closing
command dev.off() shuts off the current graphics output device, which means that
the pdf file be complete. If you forget dev.off() then your pdf viewer will complain
that the file you are trying to view is corrupt. Once you have created the required pdf

file, to include it in your LATEX document you can use the following command at the
point where you want the plot:

\includegraphics{mylovelyplot.pdf}

Often, you need to control the size of the plot in your document (which is done with
LATEX’s \scalebox{} command) and frequently you will want graphs to appear as
figures with captions (which is done using the LATEX figure environment). I also
recommend putting all included graphics files into an images subfolder rather than
cluttering the main folder where you are working. Here’s how to implement all these
things:

\begin{figure}

\begin{center}

\scalebox{0.5}{

\includegraphics{images/mylovelyplot.pdf}

}

\end{center}

\caption{This lovely plot is really inspirational for me.}

\label{F:mylovelyplot}

\end{figure}

Note that I’ve added a few more details above: I made sure the plot will be centred using
the center environment and I included a caption using the \caption{} command. I
also created a label for the figure, the purpose of which is to allow us to refer to this
figure by number without knowing what the number is. For example, in your LATEX
document you might say

my lovely plot is shown in Figure~\ref{F:mylovelyplot}

which will appear in the typeset version as “my lovely plot is shown in Figure 2”
(assuming the figure in question is currently the second figure; if you reorder the
figures in your document, LATEX renumbers everything for you).

Note: For those of you who have chosen to use the knitr package, you do not want to
use the pdf() command. knitr takes care of the graphics file generation for you.

Finally, if you want to get really fancy (i.e., publication-quality graphics), then rather
than the pdf device you can use the tikz device, which understands LATEX code in
character strings. You will first need to install the tikzDevice package. Something

Page 7 of 8

that seems to catch everyone who uses tikz is that backslashes must be escaped in
strings. Thus, for example, if you want

∑
n sinnθ to appear on your plot, the character

string you need in your code is "$\\sum_n\\sin{n\\theta}$" (note the double
backslashes!). To use tikz in ordinary code you would typically use this structure:

library("tikzDevice")

tikz("mygraph.tex",standAlone=TRUE)

GRAPHICS CODE HERE

dev.off()

and then you would need to run mygraph.tex through LATEX to produce the desired
pdf file. If you are using knitr then you need the tikz chunk option (dev="tikz").

23. If you have a data frame and want to display it nicely in a LATEX or knitr document,
you can use knitr::kable to get a perfectly reasonable result, or Hmisc::latex to
get a gorgeous result.

24. In order to use knitr, you must select knitr (rather than Sweave) as the Sweave

interpretter in RStudio. To check this setting in RStudio, go to

Preferences → Sweave → Weave Rnw files using

and choose knitr.

— END OF ASSIGNMENT —

Compile time for this document: October 23, 2020 @ 13:23

Page 8 of 8

	Install epigrowthfit package
	Familiarize yourself with epigrowthfit
	Download clean COVID-19 data for Canadian provinces
	Fit growth of COVID-19 in Canadian provinces
	Feedback on epigrowthfit
	Technical Comments (read carefully!)

