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Announcments

m Midterm test:

m Date: Tuesday 12 November 2024
m Time: 2:30pm-4:30pm
m Location: in class, HH-102

m Test structure will be discussed in class next week.

m Assignment 4 is due the day before the midterm.

m Make sure you personally can do the question on calculating
Ro on this assignment before the midterm test.

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html

Spatial Epidemic Dynamics
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Space: the final frontier.
These are the voyages of the Starship Enterprise.
Her ongoing mission: to explore strange new worlds,

to seek out new life-forms and new civilizations;

to boldly go where no one has gone before. BETAR TREK

Instructor: David Earn



Something to think about

m All of our analysis has been of temporal patterns of epidemics

m What about spatial patterns?

What problems are suggested by observed spatial epidemic
patterns?

Can spatial epidemic data suggest improved strategies for
control?

Can we reduce the eradication threshold below p.iy = 1 — R%)?

Instructor: David Earn



Measles and Whooping Cough in 60 UK cities

Measles

Whooping
Cough

Rohani, Earn & Grenfell (1999) Science 286, 968-971

Instructor: David Earn



Better Control? Eradication?

m The term-time forced SEIR model successfully predicts past
patterns of epidemics of childhood diseases

m Can we manipulate epidemics predictably so as to increase
probability of eradication?

m Can we eradicate measles?

Instructor: David Earn



|dea for eradicating measles

m Try to re-synchronize measles epidemics in the UK and,
moreover, synchronize measles epidemics worldwide:
synchrony is good

m Devise new vaccination strategy that tends to synchronize. ..
m Avoid spatially structured epidemics. . .
m Time to think about the mathematics of synchrony. ..

m But analytical theory of synchrony in a periodically forced
system of differential equations is mathematically
demanding. ..

m So let's consider a much simpler biological model. ..

Instructor: David Earn



The
Logistic Map




Logistic Map

m Simplest non-trivial discrete time population model for a
single species (with non-overlapping generations) in a single
habitat patch.

mTime: t=0,1,2,3,...
m State: x € [0,1] (population density)

m Population density at time t is x*. Solutions are sequences:

m xt1 = F(x?) for some reproduction function F(x).

m For logistic map: F(x) = rx(1 — x), so xt1 = rxf(1 — x?).
xt1 = [r(1 — xt)|xt = r is maximum fecundity (which is
achieved in limit of very small population density).

m What kinds of dynamics are possible for the Logistic Map?

Instructor: David Earn



Logistic Map Time Series, r =0.5

Xl = xt(1—xt), r=05 x =0.63662
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Logistic Map Time Series, r =0.9

Xl = xt(1—xt), r=09, xp=0.63662
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Logistic Map Time Series, r =1
xl = xt(1—-xt), r=1, xp =0.63662
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Logistic Map Time Series,

r=1.1

xttl — rxt(l — xt)7 r=11, xp=0.63662
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Logistic Map Time Series, r=1.5

xt+l — rxt(l _ Xf)7 r=15  xp=0.63662
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Logistic Map Time Series, r =2

xtl = xt(1—xt), r=2, x =0.31831
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Logistic Map Time Series, r =2.5

xt+l — rxt(l _ Xf)7 r=25xp=0.31831
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Logistic Map Time Series, r =3

xtl = xt(1—xt), r=3, x =0.31831
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Instructor: David Earn



Logistic Map Time Series, r
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Logistic Map Time Series, r =3.75
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Logistic Map Summary

m Time series show:

m r <1 — Extinction.

m 1 <r <3 = Persistence at equilibrium.

m r >3 = period doubling cascade to chaos, then appearance
of cycles of all possible lengths, and more chaos, ...

m How can we summarize this in a diagram?

m Bifurcation diagram (wrt r).
m Ignore transient behaviour: just show attractor.

Instructor: David Earn



Logistic Map, F(x) =rx(1—x), 1<r<4

Instructor: David Earn



Logistic Map, F(x)
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Instructor: David Earn



Logistic Map as a Tool to Investigate Synchrony

Very simple single-patch model: only one state variable.

Displays all kinds of dynamics from GAS equilibrium, to
periodic orbits, to chaos.
m This was extremely surprising to population biologists and
mathematicians in the 1970s.

May RM (1976) “Simple mathematical models with very complicated dynamics” Nature 261, 459-467

m Easier to work with logistic map as single patch dynamics
than SIR or SEIR model.

m Can still understand how synchrony works conceptually.

m Now we are ready for the ...
... Mathematics of Synchrony . ..

Instructor: David Earn



Mathematics of Synchrony

m System comprised of isolated patches
e.g., cities, labelled i=1,...,n

m State of system in patch i specified by x;
e.g., xi = (S, Ei, i, Ri)

m Connectivity of patches specified by a dispersal matrix
M = (mj)

m System is coherent (perfectly synchronous) if the state is the
same in all patches
ie., X1 =Xp =+ =X

Instructor: David Earn



lllustrative example: logistic metapopulation

m Single patch model: x**t1 = F(x?)

m Reproduction function: F(x) = rx(1 — x)

!

m Multi-patch model:  x'™1 = Z mi;iF(x;")
j=1

t+1 t
x1 ' my - omy,\ [F(xt)
ie., : = :
t+1 t
Xp'T Mpr -+ M) \F(x,")

where M = (m;;) is dispersal matrix.

m Colour coding of matrix indices:
m row indices are red
m column indices are cyan

Instructor: David Earn



Basic properties of dispersal matrices M = (m;)

Discrete-time metapopulation model:
n
1 .
x!T :ZmUF(Xf), i=1,2,...,n.
j=1

®m m;; = proportion of population in patch j
that disperses to patch /.

m.. 0<m; <1 foralliandj
(each mj; is non-negative and at most 1)

n
m Total proportion that leaves or stays in patch j: Z mi;
(sum of column j) i=1

n
. Z mj; <1 (every column sums to at most 1)
i=1

Could be < 1 if some individuals are lost (die) while dispersing.

Instructor: David Earn



Basic properties of dispersal matrices M = (m;)

Discrete-time metapopulation model:

n
Xit—l-l :ZmijF(th): i=1,2,...,n.
J=1

Definition (No loss dispersal matrix)

An n x n matrix M = (mj;) is said to be a no loss dispersal
matrix if all its entries are non-negative (m;; > 0 for all / and j)
and its column sums are all 1, i.e.,

n
Zmij:L foreach j=1,...,n.
i=1

m The dispersal process is “conservative” in this case.

m A no loss dispersal matrix is also said to be “column stochastic™.

Instructor: David Earn



Notation for coherent states

Discrete-time metapopulation model:
n
t+1 t :
Poas :Zm,-jF(xj), i=1,2,...,n.
j=1
m State at time t is x' = (x{,...,x}) € R".

m If state x is coherent, then for some x € R we have

X = (x1,%2,...,Xn)
=(x,x,...,x)=x(1,1,...,1)

m For convenience, define
e=(1,1,...,1) eR"
so any coherent state can be written xe, for some x € R.

Instructor: David Earn



Constraint on sums of dispersal matrix M

Lemma (Row sums are the same)

If all initially coherent states remain coherent then the row sums of
the dispersal matrix are all the same.

Proof.

Suppose initially coherent states remain coherent, i.e.,
xt = ae = x't! = be for some b € R.
Choose a such that F(a) #0. Then

b= m ) = Yo O = O
j=1 = o

= Z mjj = — (independent of /)
[]

Instructor: David Earn



Constraint on sums of dispersal matrix M

Lemma (Row sums are all 1)

If every solution {x'} of the single patch map F(x) yields a
coherent solution {x*e} of the full map then the row sums of the
dispersal matrix are all 1.

Suppose xt = ae = x'1 = F(a)e and F(a) # 0. Then

X Zm’f Zmu F(a)zmlj

j=1

— Z gy = (independent of /)
' L

Instructor: David Earn



Project




You

should be thinking about your Project. ..

Settle on project topic ASAP. ..

Remember your group must give an oral presentation of your
project as well (in the last class).

Classes after the midterm are NOT optional. Your group is
expected to meet in class and take advantage of the
instructor’s presence to solve issues with your project.

Project Notebook template is posted on project page.
Feedback on project draft. ..

Movie night?

Instructor: David Earn


http://davidearn.github.io/math4mb/project/project.html
http://davidearn.github.io/math4mb/project/project.html

Back to
Space and
Synchrony




Let's review what we've done so far on spatial models. . .

Logistic metapopulation model
m Notion of coherence
m No-loss dispersal matrix M: column sums are all 1

m To retain homogeneous solutions: row sums are all 1

Instructor: David Earn



Simple examples of no loss dispersal matrices

m Equal coupling: a proportion m from each patch disperses
uniformly among the other n — 1 patches:

L 1-m i=j
T min—1) 4

m Nearest-neighbour coupling on a ring: a proportion m go to
the two nearest patches:

1-m i=j
mjj=<¢m/2 i=j—1orj+1 (mod n)
0 otherwise

m Real dispersal patterns generally between these two extremes

Instructor: David Earn



Key Question

m Can we find conditions on the dispersal matrix M, and/or the
single patch reproduction function F, that guarantee (or
preclude) coherence asymptotically (as t — c0)?

m If so, then this sort of analysis should help to identify
synchronizing vaccination strategies.

Instructor: David Earn



Exploratory simulations

m Let's try to build up some intuition by running simulations of
a logistic metapopulation

Reproduction function F(x) = rx (1 — x)

m various levels of fecundity: 1 <r <4
m n = 10 patches with equal coupling

m various levels of connectivity: 0 < m<1

Instructor: David Earn



Logistic Metapopulation Simulation (r =1, m = 0.2)

1.0
©
0.8 ]
0.6 1
xt ®
0.4
@
0.2 1
o
0.0 4 \ \ \ \ \
0 2 4 6 8 10

Time t

Instructor: David Earn



Logistic Metapopulation Simulation (r =1, m = 0.2)

n=10, r=1 m=02, A=0.778
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Logistic Metapopulation Simulation (r =1, m = 0.2)
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Logistic Metapopulation Simulation (r =1, m = 0.2)
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Logistic Metapopulation Simulation (r =1, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.02)
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Logistic Metapopulation Simulation (r =2, m = 0.02)

n=10, r=2, m=0.02, XA=0.978
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Instructor: David Earn



Logistic Metapopulation Simulation (r =2, m = 0)
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Logistic Metapopulation Simulation (r =2, m = 0)

1.0
¢ = l[x = (x)ell
08 10
!
)
%
0.6 19
t \3 -
X; @‘5;{@/@
59
0.4 qor!
! /
é) /
O]
L/
0.2 4\
e
0.0 ¥ hd ¥ hd 4 1
0 10 20 30 40 50

Time t

Instructor: David Earn



—~
N
o
I
g
n/_y
o™
I
o
~—"
c
.9
-
is
3
£
wn
c
.9
-
is
=
o
o
o
Q]
4+
Q
=
L
4+
-4
a0
(@)
—

0.778

A=

0.2,

50

40

30

Time t

Instructor: David Earn



—~
N
o
I
g
n/_y
o™
I
o
~—"
c
.9
-
is
3
£
wn
c
.9
-
is
=
o
o
o
Q]
4+
Q
=
L
4+
-4
a0
(@)
—

0.778

A=

0.2,

50

0

30

Time t

Instructor: David Earn



—~
N
o
I
g
L6
o™
I
o
~—"
c
.9
-
is
3
£
wn
c
.9
-
is
=
o
o
o
Q]
4+
Q
=
L
4+
-4
a0
(@)
—

Time t

David Earn

Instructor:



—~
N
o
I
g
L6
o™
I
o
~—"
c
.9
-
is
3
£
wn
c
.9
-
is
=
o
o
o
Q]
4+
Q
=
L
4+
-4
a0
(@)
—

Time t

Instructor: David Earn



—
o
o -3
T9)
N~ - <
o S
W -
I
- ~
N—"
c oF -3
s S
= 3
E o
£ <
wn I
.
c
=y < e
© I P ———
=] < =
p -
o)
o
©
)
3]
O
i)
o]
Q0
o)
—

Time t

Instructor: David Earn



—~
o
o
I
g
T9)
™~
o™
I
o
~—"
c
.9
-
is
3
£
wn
c
.9
-
is
=
o
o
o
Q]
4+
Q
=
L
4+
-4
a0
(@)
—

Time t

Instructor: David Earn



—~
o
o
I
g
)
e
o™
I
o
~—"
c
.9
-
is
3
£
wn
c
.9
-
is
=
o
o
o
Q]
4+
Q
=
L
4+
-4
a0
(@)
—

Time t

Instructor: David Earn



0.2)

e —— )

r——— )

1.0 4
.8
6

g
o
©
™

I

|-
N—"

c
.0
)
&

=)
£
(0p)]

c
.0

)
©

=

o

o

o

T

i)

)
=
L

)
o]

a0

o)
4

Time t

Instructor: David Earn



0.3)

g
o
©
™

I

|-
N—"

c
.0
)
&

=)
£
(0p)]

c
.0
)
©

=

o

o

o

T
i)

)
=
L

)
o]

a0

o)
4

Time t

Instructor: David Earn



Logistic Metapopulation Simulation (r = 3.83, m = 0.3)

n=10, r=383, m=03, X=0.667

Time t

Instructor: David Earn
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Metapopulation dynamics: what we've seen so far

m Examples of connectivity matrices

m equal coupling

m nearest-neighbour coupling on a ring

m Logistic Metapopulation Simulations (10 patches)

mr=1 m=02 [
mr=2 m=02 [
mr=2 m=0.02 [
mr=2m=0 [
mr=32 m=0.2 [

Instructor: David Earn

r=35 m=0.2

r=23.75 m=0.2
r=23.83, m=0.2
r=3.83, m=0.3
r=3.83, m=04

r=4 m=0.1
r=4 m=20.2
r=4 m=0.3
r=4 m=0.4
r=4 m=0.5



Quantities that affect coherence

Degree of spatial coupling:

m Determined by dispersal matrix M = (m;).

m Do we need to worry about about all matrix entries?
n? parameters?

m Are eigenvalues enough?

m Dominant eigenvalue is always 1. Why?
m Next slide. ..

m Coherence is affected by magnitude |A| of
subdominant eigenvalue \.

Instructor: David Earn



Dominant eigenvalue of dispersal matrix M is always 1

Definition (Positive vector)

A vector is positive if each of its components is positive.

Definition (Dominant eignvalue)

A is a dominant eigenvalue of a matrix A if no other eigenvalue
of A has larger magnitude.

Theorem

Let A be a nonnegative matrix. If A has a positive eigenvector
then the corresponding eigenvalue ) is nonnegative and dominant,
ie., p(A) =\

Proof.
See Horn & Johnson (2013) Matrix Analysis, Corollary 8.1.30, p.522. [J

Instructor: David Earn




Dominant eigenvalue of dispersal matrix M is always 1

Corollary

Consider a discrete-time metapopulation map,
n
1 .
e = Z m,-jF(xJ-t), i=1,...,n (©)
j=1

If solutions of the single patch system, x+1 = F(xt), yield
coherent solutions of (V) then 1 is a dominant eigenvalue of M.

Proof.

We found earlier that if solutions of the single patch map vyield
coherent solutions of (V) then 377 ; m;; = 1 for all i.

This is equivalent to the statement that Me = e, i.e., 1 is an
eigenvalue of M with eigenvector e.

But e is a positive vector, hence by the lemma on the previous
slide, 1 is a dominant eigenvalue of M. O
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Quantities that affect coherence

Maximum “reproductive rate”:

m Maximum fecundity = maximum reproduction per individual
per time step.

m For (single patch) logistic map, F(x) = rx(1 — x), maximum
fecundity is r.  Note: r = max, (F'(x)).

m Maximum fecundity for any one-dimensional single species
map F is r = max, (F'(x)).

m More generally, single patch map can be multi-dimensional:
could represent multiple species (e.g., predator, prey, ...)
and/or multiple states per species (e.g., S, E, I, R).

m We can think of r = max || DxF|| as the maximum
“reproductive rate” for a multi-dimensional single-patch map.

m r is relevant to coherence.

Instructor: David Earn



Quantities that affect coherence

Average “reproductive rate”:

m Mean “reproductive rate” over T time steps is
1 ~T-1
TZtZO HDXtFH

m Geometric mean turns out to be more important:

1T

T-1
[H ‘|DXtF||] - [HDXOF” ||DX1F||"'HDXTleH]l/T
t=0
= || DxyF - Dy F -+ Dyy o FI[ 17
1T
= [ owFT]]
T-1 1T 1
. log lH ||DxtF||] = — log|| Dy F |
t=0 T
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Quantities that affect coherence

Average “reproductive rate”:
m We actually want the average over the entire trajectory, so we
would like to consider

lim = Iog |DWFT| = lim_ % log

T-1
o
t=0

1T71
— lim = S log D, F .
TgnooT;)ogH wal

m But this limit may not exist! So consider lim sup:

T-1
Xop = lim supf > log||DxF -
T—o0 t=0

which always exists if ||DxF|| is bounded
(true for us because we assume r = maxy || DxF|| exists).

Instructor: David Earn


https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior

Quantities that affect coherence: Summary

m Degree of spatial coupling:
Magnitude |\| of subdominant eigenvalue A of dispersal
matrix M

m Maximum “reproductive rate”:

r = max || D F||

m Average “reproductive rate”:
1 T2
Xo = limsup > log || D Fl

T—oo t=0

This is called the maximum (Lyapunov) characteristic
exponent of the single patch map.

Instructor: David Earn



Criteria for asymptotic coherence

m Coherence inevitable:
Global asymptotic coherence: system will eventually
synchronize regardless of initial conditions:
riAl <1
m Coherence possible:
Local asymptotic coherence: system will synchronize if
sufficiently close to a coherent attractor:

eX|Al <1 ie, x+log|\ <0

Note:  is the same for “almost all” initial states x
(non-trivial to prove)
m Coherence impossible:

eX|A > 1 ie, x+log|A >0

Earn, Levin & Rohani (2000) Science 290, 1360-1364
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Midterm Test

m The test will cover everything from lectures and
assignments/solutions up to and including today.

However:
m Material connected with synchrony/coherence will occur only
in multiple choice questions.

m Material on classical time series analysis (e.g., autocorrelation,
ARMA models) will not be tested directly, but you need to
remember the meaning and relevance of the power spectral

density (a.k.a. power spectrum).
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Midterm Test

m You are assumed to be comfortable with:

m Elementary algebra, including finding the eigenvalues of 2 x 2
matrices.

m Stability analyses of differential equations, including finding
equilibria and establishing their instability or stability.

m Finding Rg by biological and mathematical methods.

m Make sure you know how to apply the next generation method
[o(FV™1)] to obtain a formula for Ro.

m Finding the initial growth rate for an epidemic model expressed
with ODEs.

m The initial growth rate r is the dominant eigenvalue of the
linearization of the system at the DFE.

m Simple to calculate if you've already computed Ry via the
next generation matrix: as noted in class in Lecture 7 (final
slide on estimating Ro), r is the largest positive (or least
negative) real part of the eigenvalues of F — V.
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Midterm Test

m You are also assumed to be comfortable with:
m The critical vaccination proportion, and how to find it.

m The relationship between the rate of leaving a compartment
and the mean time spent in the compartment.

m Converting flow charts or verbal descriptions into
compartmental ODE models.

m Finding equilibria of discrete time models, e.g., models of the
form xtt1 = F(x%).

Instructor: David Earn



Midterm Test

m Further information:

m You will be presented with scenarios including graphs, and
asked to write explanations that would be understandable by
people at PHAC.

m You will be presented with a transfer diagram (flow chart)
from which you will need to infer R and to which you will
need to add features to represent details of an epidemiological
situation that is described.

m Make sure you understand and can explain bifurcation
diagrams with respect to seasonal amplitude (&) and with
respect to basic reproduction number (Rg). In particular,
make sure you can explain how relevant bifurcation diagrams
can be used to explain transitions in dynamics of infectious
diseases that cause recurrent epidemics.

Instructor: David Earn



Midterm Test

V1 page 1 of

MATHEMATICS 4MB3/6MB3

Midterm Test, Tuesday 12 November 2024

please write as legibly as

possible within

Spe

Instructions and Notes

(i) This test has 16 pages. Verify that your copy is complete. Note that the final three
pages are blank to provide additional space if needec

(i1) Answer all questions in the space provided.

(i) It is possible to obtain a total of 100 marks.

There are 8 multiple choice questions
(question 1 is worth 2

narks, whereas all other multiple choice questions are worth 4
marks each). There are 10 short answer questions (worth 7 marks each)

(iv) For multiple choice questions, circle only one answer.

(v) No calculators, notes, or aids of any kind are permitted.

(vi) PHAC refers to the Public Health Agency of Canada,

GOOD LUCK

age 1 of 16
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Coherence: what we've seen so far

m Quantities that affect coherence

m Coherence criteria

Instructor: David Earn



Global asymptotic coherence (GAC) for equal coupling

Theorem: r|A\| <1 = GAC.

Proof in case of equal coupling:

Dispersal matrix: Subdominant eigenvalue:
1—m =] n
mjj = T A=1- ( )m
mi(n—1) i#] n—1
General map: Equal coupling case in terms of \:
xj =Y miF(x) = AF(x) 4+ (1= A) (F(x)
j=1

Instructor: David Earn



Global asymptotic coherence (GAC) for equal coupling

Difference in density between any two patches at next iteration:
xj — X = ALF(xi) — F()]

= AF'(&)(xi — xx) (Mean Value Theorem)

Hence |x} — x| < r|A||xi — xx| because r = maxy|F’'(x)|.

Therefore, ri]\| <1 implies |x; — xx| — 0.
Q.E.D.

Note: Actually true for very general connectivity matrices M and
multi-dimensional single-patch dynamics F(x).
Earn & Levin (2006) PNAS 103, 3968-3971
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Theory of local asymptotic coherence (LAC)

m Requires measure theory (e.g., Math 4A03), which allows us
to make precise statements like “x is the same for almost all
initial states".

m More significant theoretically than practically, because it
yields only possibility rather than probability of coherence.

m Quasi-global theory attempts to
bridge the gap between “probability = 1" and “probability > 0"

McCluskey & Earn (2011) J. Math. Biol. 62, 509-541

Instructor: David Earn



Application of simple coherence criteria

10 patch logistic metapopulation

I riAl <1 (coherence inevitable)
I eX|A| > 1 (coherence impossible)

Equal coupling . lNef—lrels'( r:eigl;hblor IcotrplilngI

Dispersal fraction m

Maximum fecundity r Maximum fecundity r

Earn, Levin & Rohani (2000) Science 290, 1360-1364
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Comments on coherence theory

Global theory is limited in applicability:

m Nice theorem guarantees global asymptotic coherence (GAC)

Earn & Levin (2006) PNAS 103, 3968-3971

m But hypotheses quite restrictive

Local theory is limited in practical power:
m Applies very generally and aids understanding

m But coherence possible doesn't tell how probable

Quasi-global theory promising:

m Show asymptotic approach to coherent manifold from
anywhere nearby (rather than just near attractor)

m Via Lozinskii measures

McCluskey & Earn (2011) J. Math. Biol. 62, 509-541

Instructor: David Earn



Coherence in “numerical experiments” (simulations)

10 patch logistic metapopulation

m Systematically explore representative set of initial conditions
and determine probability of coherence within some tolerance,
within some specified time

m e.g., coherence to within 10% within 10 iterations

Equal coupling Nearest neighbor coupling
1 1
0.5 0.5
2.05 by \\/// 2.05 = /
3-5r a0 02 04 06 O 3-5r a0 02 04 0s 0%

Earn, Levin & Rohani (2000) Science 290, 1360-1364

m Extremely demanding computationally. . .
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Connecting coherence to extinction

m Strictly deterministic simulations reveal conditions (model
parameter regions) that tend to lead to coherence.

m Coherence # extinction, but intuitively predict:

higher probability of coherence —
e higher probability of global extinction

e smaller difference between probabilities
of local and global extinction

m Test these predictions by adding global noise (randomly
occurring events that affect all patches equally) to the
deterministic simulations.

m Global noise models environmental stochasticity (e.g.,
weather), which presents a large risk of global extinction
because the noise is correlated across all patches.

Instructor: David Earn



Effects of global events that affect all patches equally

10 patch logistic metapopulation subject to “global noise”

0.04

Locallglobal probability of extinction
Probabilitity of coherence

A T L 0 |....|..."=0
25 3 35 4 25 3 35 4

Maximum fecundity r Maximum fecundity r

Earn, Levin & Rohani (2000) Science 290, 1360-1364
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Comments on coherence “experiments”

10 patch logistic metapopulation

Relationship between model parameters (r, m) and probability of
coherence is complicated.

Predicted relationship between probabilities of coherence and
extinction verified.
Experiments we've discussed ignore demographic stochasticity:
m number of individuals in a population is always an integer.
m number of offspring an individual produces is a stochastic
process.

Better model would use a stochastic demographic process rather
than a deterministic map based on population densities.

Population models like logistic metapopulation are most relevant to
species with non-overlapping generations, but qualitative results
provide insights relevant more generally for causing or preventing
extinctions (e.g., eradication of pathogens or conservation of
endangered species).
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Relationship to conservation

m For species that we want to conserve, synchrony is bad!
m Synchrony prevents rescue effects

m Coherence criteria yield method for estimating risk of
synchronization in ecological systems

Earn, Levin & Rohani (2000) “Coherence and Conservation” Science 290, 1360-1364
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Current Coherence Research

Mathematical challenges
m Strengthen theorems

m Work out details of illustrative examples

Biological goals

m Why do measles and whooping cough have opposite patterns
of synchrony?

m What kinds of vaccination strategies can synchronize
epidemics worldwide?

m Are such strategies practical to implement?

m Example: global pulse vaccination

Instructor: David Earn



Global pulse vaccination

Basic idea

m International vaccination day each year
(or in alternate years, etc.)

m Probably combined with continuous vaccination in countries
that already have almost complete coverage

Why might this help?
m Introduce a synchronized periodic forcing

m Has potential to synchronize epidemic troughs

m Pathogen more likely to go extinct globally during
synchronized trough

Why might this fail?

m Periodic forcing can have complex dynamical effects. . .

Instructor: David Earn



Example of Synchronization via Pulse Vaccination
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SEIR model: Ny = N =5 x 107, Rg = 17, 0! = 8 days, v~ = 5 days, o = 0.15, € = 0.001.

m Immunization started in year 50. Then 20% of susceptible
population vaccinated on 1 January each year.

Earn, Rohani & Grenfell (1998) Proc. R. Soc. Lond. 265, 7-10
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