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Announcments

m Midterm test:

m Date: Tuesday 12 November 2024
m Time: 2:30pm-4:30pm
m Location: in class, HH-102

m Test structure will be discussed in class next week.

m Assignment 4 is due the day before the midterm.

m Make sure you personally can do the question on calculating
Ro on this assignment before the midterm test.

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html
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Space: the final frontier.
These are the voyages of the Starship Enterprise.
Her ongoing mission: to explore strange new worlds,

to seek out new life-forms and new civilizations;

to boldly go where no one has gone before. BETAR TREK
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Something to think about

m All of our analysis has been of temporal patterns of epidemics

m What about spatial patterns?

What problems are suggested by observed spatial epidemic
patterns?

Can spatial epidemic data suggest improved strategies for
control?

Can we reduce the eradication threshold below p.iy = 1 — R%)?

Instructor: David Earn



Measles and Whooping Cough in 60 UK cities

Measles

Whooping
Cough

Rohani, Earn & Grenfell (1999) Science 286, 968-971
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Better Control? Eradication?

m The term-time forced SEIR model successfully predicts past
patterns of epidemics of childhood diseases

m Can we manipulate epidemics predictably so as to increase
probability of eradication?

m Can we eradicate measles?

Instructor: David Earn
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|dea for eradicating measles

m Try to re-synchronize measles epidemics in the UK and,
moreover, synchronize measles epidemics worldwide:
synchrony is good

m Devise new vaccination strategy that tends to synchronize. ..
m Avoid spatially structured epidemics. . .
m Time to think about the mathematics of synchrony. ..

m But analytical theory of synchrony in a periodically forced
system of differential equations is mathematically
demanding. ..

m So let's consider a much simpler biological model. ..

Instructor: David Earn
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Logistic Map

m Simplest non-trivial discrete time population model for a
single species (with non-overlapping generations) in a single
habitat patch.

mTime: t=0,1,2,3,...
m State: x € [0,1] (population density)

m Population density at time t is x*. Solutions are sequences:

m xt1 = F(x?) for some reproduction function F(x).

m For logistic map: F(x) = rx(1 — x), so xt1 = rxf(1 — x?).
xt1 = [r(1 — xt)|xt = r is maximum fecundity (which is
achieved in limit of very small population density).

m What kinds of dynamics are possible for the Logistic Map?

Instructor: David Earn



Logistic Map Time Series, r =0.5

Instructor: David Earn



Logistic Map Time Series, r =0.5

Xl = xt(1—xt), r=05 x =0.63662
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Logistic Map Time Series, r =0.9

Xl = xt(1—xt), r=09, xp=0.63662
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Logistic Map Time Series, r =1
xl = xt(1—-xt), r=1, xp =0.63662
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Logistic Map Time Series,

r=1.1

xttl — rxt(l — xt)7 r=11, xp=0.63662
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Logistic Map Time Series, r=1.5

xt+l — rxt(l _ Xf)7 r=15  xp=0.63662
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Logistic Map Time Series, r =2

xtl = xt(1—xt), r=2, x =0.31831
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Logistic Map Time Series, r =2.5

xt+l — rxt(l _ Xf)7 r=25xp=0.31831
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Logistic Map Time Series, r =3

xtl = xt(1—xt), r=3, x =0.31831
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Logistic Map Time Series, r =3.5
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Logistic Map Time Series, r =3.83
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Logistic Map Time Series, r =14
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Logistic Map Summary

m Time series show:

m r <1 — Extinction.

m 1 <r <3 = Persistence at equilibrium.

m r >3 = period doubling cascade to chaos, then appearance
of cycles of all possible lengths, and more chaos, ...

m How can we summarize this in a diagram?

m Bifurcation diagram (wrt r).
m Ignore transient behaviour: just show attractor.

Instructor: David Earn



Logistic Map, F(x) =rx(1—x), 1<r<4
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Logistic Map, F(x)
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Logistic Map as a Tool to Investigate Synchrony

Very simple single-patch model: only one state variable.

Displays all kinds of dynamics from GAS equilibrium, to
periodic orbits, to chaos.
m This was extremely surprising to population biologists and
mathematicians in the 1970s.

May RM (1976) “Simple mathematical models with very complicated dynamics” Nature 261, 459-467

m Easier to work with logistic map as single patch dynamics
than SIR or SEIR model.

m Can still understand how synchrony works conceptually.

m Now we are ready for the ...
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Mathematics of Synchrony

m System comprised of isolated patches
e.g., cities, labelled i=1,...,n

m State of system in patch i specified by x;
e.g., xi = (S, Ei, i, Ri)

m Connectivity of patches specified by a dispersal matrix
M = (mj)

m System is coherent (perfectly synchronous) if the state is the
same in all patches
ie., X1 =Xp =+ =X

Instructor: David Earn
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lllustrative example: logistic metapopulation

m Single patch model: x**t1 = F(x?)

m Reproduction function: F(x) = rx(1 — x)

!

m Multi-patch model:  x'™1 = Z mi;iF(x;")
j=1

t+1 t
x1 ' my - omy,\ [F(xt)
ie., : = :
t+1 t
Xp'T Mpr -+ M) \F(x,")

where M = (m;;) is dispersal matrix.

m Colour coding of matrix indices:
m row indices are red
m column indices are cyan

Instructor: David Earn
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Basic properties of dispersal matrices M = (m;)

Discrete-time metapopulation model:
n
1 .
x!T :ZmUF(Xf), i=1,2,...,n.
j=1

®m m;; = proportion of population in patch j
that disperses to patch /.

m.. 0<m; <1 foralliandj
(each mj; is non-negative and at most 1)

n
m Total proportion that leaves or stays in patch j: Z mi;
(sum of column j) i=1

n
. Z mj; <1 (every column sums to at most 1)
i=1

Could be < 1 if some individuals are lost (die) while dispersing.

Instructor: David Earn
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Basic properties of dispersal matrices M = (m;)

Discrete-time metapopulation model:

n
Xit—l-l :ZmijF(th): i=1,2,...,n.
J=1

Definition (No loss dispersal matrix)

An n x n matrix M = (mj;) is said to be a no loss dispersal
matrix if all its entries are non-negative (m;; > 0 for all / and j)
and its column sums are all 1, i.e.,

n
Zmij:L foreach j=1,...,n.
i=1

m The dispersal process is “conservative” in this case.

m A no loss dispersal matrix is also said to be “column stochastic™.

Instructor: David Earn
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Notation for coherent states

Discrete-time metapopulation model:
n
t+1 t :
Poas :Zm,-jF(xj), i=1,2,...,n.
j=1
m State at time t is x' = (x{,...,x}) € R".

m If state x is coherent, then for some x € R we have

X = (x1,%2,...,Xn)
=(x,x,...,x)=x(1,1,...,1)

m For convenience, define
e=(1,1,...,1) eR"
so any coherent state can be written xe, for some x € R.

Instructor: David Earn
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Lemma (Row sums are all 1)

If every solution {x'} of the single patch map F(x) yields a
coherent solution {x*e} of the full map then the row sums of the
dispersal matrix are all 1.

Suppose xt = ae = x'1 = F(a)e and F(a) # 0. Then
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You

should be thinking about your Project. ..

Settle on project topic ASAP. ..

Remember your group must give an oral presentation of your
project as well (in the last class).

Classes after the midterm are NOT optional. Your group is
expected to meet in class and take advantage of the
instructor’s presence to solve issues with your project.

Project Notebook template is posted on project page.
Feedback on project draft. ..

Movie night?
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Key Question

m Can we find conditions on the dispersal matrix M, and/or the
single patch reproduction function F, that guarantee (or
preclude) coherence asymptotically (as t — c0)?

m If so, then this sort of analysis should help to identify
synchronizing vaccination strategies.

Instructor: David Earn
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Exploratory simulations

m Let's try to build up some intuition by running simulations of
a logistic metapopulation

Reproduction function F(x) = rx (1 — x)

m various levels of fecundity: 1 <r <4
m n = 10 patches with equal coupling

m various levels of connectivity: 0 < m<1

Instructor: David Earn
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Logistic Metapopulation Simulation (r = 3.5, m = 0.2)
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Logistic Metapopulation Simulation (r = 3.75, m = 0.2)

Instructor: David Earn
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Logistic Metapopulation Simulation (r = 3.83, m = 0.2)
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Logistic Metapopulation Simulation (r = 3.83, m = 0.3)

Instructor: David Earn
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Logistic Metapopulation Simulation (r = 3.83, m = 0.3)
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Logistic Metapopulation Simulation (r = 3.83, m = 0.4)
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Logistic Metapopulation Simulation (r =4, m = 0.1)

Instructor: David Earn
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Logistic Metapopulation Simulation (r =4, m = 0.2)
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Logistic Metapopulation Simulation (r =4, m = 0.3)
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Logistic Metapopulation Simulation (r =4, m = 0.4)

Instructor: David Earn
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Logistic Metapopulation Simulation (r =4, m = 0.5)

Instructor: David Earn
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Metapopulation dynamics: what we've seen so far

m Examples of connectivity matrices

m equal coupling

m nearest-neighbour coupling on a ring

m Logistic Metapopulation Simulations (10 patches)

mr=1 m=02 [
mr=2 m=02 [
mr=2 m=0.02 [
mr=2m=0 [
mr=32 m=0.2 [
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r=35 m=0.2

r=23.75 m=0.2
r=23.83, m=0.2
r=3.83, m=0.3
r=3.83, m=04

r=4 m=0.1
r=4 m=20.2
r=4 m=0.3
r=4 m=0.4
r=4 m=0.5
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Quantities that affect coherence

Degree of spatial coupling:

m Determined by dispersal matrix M = (m;).

m Do we need to worry about about all matrix entries?
n? parameters?

m Are eigenvalues enough?

m Dominant eigenvalue is always 1. Why?
m Next slide. ..

m Coherence is affected by magnitude |A| of
subdominant eigenvalue \.

Instructor: David Earn
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Dominant eigenvalue of dispersal matrix M is always 1

Definition (Positive vector)

A vector is positive if each of its components is positive.

Definition (Dominant eignvalue)

A is a dominant eigenvalue of a matrix A if no other eigenvalue
of A has larger magnitude.

Theorem

Let A be a nonnegative matrix. If A has a positive eigenvector
then the corresponding eigenvalue ) is nonnegative and dominant,
ie., p(A) =\

Proof.
See Horn & Johnson (2013) Matrix Analysis, Corollary 8.1.30, p.522. [J
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Dominant eigenvalue of dispersal matrix M is always 1

Corollary

Consider a discrete-time metapopulation map,

n
Xit+1 — Z m;jF(Xf), i=1,...,n (©)
j=1

If solutions of the single patch system, x+1 = F(xt), yield
coherent solutions of () then 1 is a dominant eigenvalue of M.
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Dominant eigenvalue of dispersal matrix M is always 1

Corollary

Consider a discrete-time metapopulation map,
n
1 .
e = Z m,-jF(xJ-t), i=1,...,n (©)
j=1

If solutions of the single patch system, x+1 = F(xt), yield
coherent solutions of (V) then 1 is a dominant eigenvalue of M.

Proof.

We found earlier that if solutions of the single patch map vyield
coherent solutions of (V) then 377 ; m;; = 1 for all i.

This is equivalent to the statement that Me = e, i.e., 1 is an
eigenvalue of M with eigenvector e.

But e is a positive vector, hence by the lemma on the previous
slide, 1 is a dominant eigenvalue of M. O
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Quantities that affect coherence

Maximum “reproductive rate”:

m Maximum fecundity = maximum reproduction per individual
per time step.

m For (single patch) logistic map, F(x) = rx(1 — x), maximum
fecundity is r.  Note: r = max, (F'(x)).

m Maximum fecundity for any one-dimensional single species
map F is r = max, (F'(x)).

m More generally, single patch map can be multi-dimensional:
could represent multiple species (e.g., predator, prey, ...)
and/or multiple states per species (e.g., S, E, I, R).

m We can think of r = max || DxF|| as the maximum
“reproductive rate” for a multi-dimensional single-patch map.

m r is relevant to coherence.
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m Mean “reproductive rate” over T time steps is
1 ~T-1
TZtZO HDXtFH

m Geometric mean turns out to be more important:

T-1 1T ;
1

[H ‘|DXtF||] - [HDXOF” ||DX1F||"'HDXT71F|H /
t=0

= [IDF - D F - Doy, F YT
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Quantities that affect coherence

Average “reproductive rate”:

m Mean “reproductive rate” over T time steps is
1 ~T-1
TZtZO HDXtFH

m Geometric mean turns out to be more important:

1T

T-1
[H ‘|DXtF||] - [HDXOF” ||DX1F||"'HDXTleH]l/T
t=0
= || DxyF - Dy F -+ Dyy o FI[ 17
1T
= [ owFT]]
T-1 1T 1
. log lH ||DxtF||] = — log|| Dy F |
t=0 T
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Quantities that affect coherence

Average “reproductive rate”:
m We actually want the average over the entire trajectory, so we
would like to consider

lim = Iog |DWFT| = lim_ % log

T-1
o
t=0

1T71
— lim = S log D, F .
TgnooT;)ogH wal

m But this limit may not exist! So consider lim sup:

T-1
Xop = lim supf > log||DxF -
T—o0 t=0

which always exists if ||DxF|| is bounded
(true for us because we assume r = maxy || DxF|| exists).
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Quantities that affect coherence: Summary

m Degree of spatial coupling:
Magnitude |\| of subdominant eigenvalue A of dispersal
matrix M

m Maximum “reproductive rate”:

r = max || D F||

m Average “reproductive rate”:
1 T2
Xo = limsup > log || D Fl

T—oo t=0

This is called the maximum (Lyapunov) characteristic
exponent of the single patch map.
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Criteria for asymptotic coherence

m Coherence inevitable:
Global asymptotic coherence: system will eventually
synchronize regardless of initial conditions:
riAl <1
m Coherence possible:
Local asymptotic coherence: system will synchronize if
sufficiently close to a coherent attractor:

eX|Al <1 ie, x+log|\ <0

Note:  is the same for “almost all” initial states x
(non-trivial to prove)
m Coherence impossible:

eX|A > 1 ie, x+log|A >0

Earn, Levin & Rohani (2000) Science 290, 1360-1364
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