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20th century measles dynamics in England and Wales
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I Annual epidemics, then biennial, then irregular

I Why is the pattern of epidemic recurrence so complicated?

I What causes changes in frequency content over time?
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What causes changes in frequency content over time?



SEIR model

dS

dt
= ν(1− p)− βSI − µS

dE

dt
= βSI − σE − µE

dI

dt
= σE − γI − µI

dR

dt
= νp + γI − µR

I Birth rate (ν for natality)

I Death rate (µ for mortality)

I Proportion vaccinated (p)

I Transmission rate (β)

I Mean latent period (Tlat = 1/σ)

I Mean infectious period
(Tinf = 1/γ)



SEIR with vital dynamics and vaccination: Analysis

I Two Equilibria
I Disease Free Equilibrium (DFE)
I Endemic Equilibrium (EE)

I Periodic solutions ? Chaos? No.

I Basic reproduction number R0: expected infections from one
infected entering a wholly susceptible population
I Biological derivation: (assuming ν = µ and p = 0)
R0 = β × σ

σ+µ × 1
γ+µ ' βγ−1 ∵ 1

µ � max
(

1
σ ,

1
γ

)

I Mathematical derivation:
R0 = 1 is stability boundary van den Driessche & Watmough 2002

Mathematical Biosciences 180:29–48

I EE is globally asymptotically stable (GAS) if R0 > 1;
DFE is GAS otherwise.

I Approach to EE is typically via damped oscillations.

I But observed recurrent epidemics are undamped.



What are we missing?



Populations are finite: demographic stochasticity

I Differential equations describe the expected behaviour in limit
that population size N →∞

I Re-cast the SEIR model as a stochastic process
(continuous time Markov jump process)

I Simulate with standard Gillespie algorithm
Gillespie 1976, J. Comp. Phys. 22, 403–434

https://en.wikipedia.org/wiki/Continuous-time_Markov_chain
https://en.wikipedia.org/wiki/Gillespie_algorithm


Gillespie Simulations: SEIR Results for Measles Parameters

R0 = 17, Tlat = 8 days, Tinf = 5 days, ν = µ = 0.02/year, N = 5, 000, 000

Earn (2009) IAS/Park City Mathematics Series 14:151–186

I Demographic Stochasticity sustains transient behaviour
(oscillations do not damp out) (Bartlett 1950’s)

I Explains undamped oscillations at a single period

I But, unable to explain changes in interepidemic period, or
irregularity, as observed

https://davidearn.mcmaster.ca/publications/Earn2009


What are we STILL missing?



Contact rates are higher during school terms!



Sinusoidal SEIR Model

I Transmission rate β is not constant:
high during school terms, low in summer

London WP, Yorke JA, 1973, Am. J. Epidemiol. 98, 453–468

I For simplicity, model as a sine wave:

β(t) = 〈β〉
(
1 + α cos 2πt

)

I 〈β〉 = mean transmission rate
I α = amplitude of seasonal variation in contact rate

Jan Apr Jul Oct Jan

β
(t
)



Is this change significant?

I We now have a forced nonlinear system

I Forcing frequency can resonate with the natural timescales of
the disease (e.g., period of damped oscillations)

I Very rich dynamical system. . .
(analogy: forced pendulum)



Measles Bifurcation Diagram (Sinusoidal SEIR model)
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Sinusoidal SEIR Model: Does it explain measles dynamics?

SEIR model with sinusoidal forcing:

I Produces recurrent undamped epidemics of all frequencies
observed in measles time series.

Schwartz IB, Smith HL, 1983, J. Math. Biol. 18, 233–253

I Produces chaos, which can explain irregular behaviour and
transitions from one type of cycle to another

Olsen LF, Schaffer WM, 1990, Science 249, 499–504

I If correct, this implies these transitions are unpredictable.

I BUT. . . the model also predicts rapid extinction of the virus
(not persistence).



Measles Bifurcation Diagram (Sinusoidal SEIR model)



What are we STILL missing?



Contact rates are higher during school terms!



Sinusoidal forcing vs Term-time forcing

Jan Apr Jul Oct Jan

β
(t
)

Jan Apr Jul Oct Jan

Term Term

Summer

Term

β
(t
)

I Term-time SEIR model predicts a strictly biennial cycle of
measles epidemics, at all times and places.

I Is superb agreement with post-war measles dynamics
coincidental???



What ELSE might we be missing?



Key Insight

I Suppose R0 is estimated when the birth rate is ν.

I If the birth rate changes, ν → ν ′, then the dynamical effect is
identical to changing R0 instead:

R0 −→ R0
ν ′

ν

I More generally, any change in susceptible recruitment rate is
equivalent dynamically to a change in R0.

I A change in birth rate ν → ν ′ together with a change in
vaccine uptake p → p′ is dynamically equivalent to

R0 −→ R0
ν ′(1− p′)

ν(1− p)

Earn et al. (2000) Science 287:667–670

Earn (2009) IAS/Park City Mathematics Series 14:151–186

https://davidearn.mcmaster.ca/publications/EarnEtAl2000
https://davidearn.mcmaster.ca/publications/Earn2009


Predicting Epidemic Transitions

I Changes in
I Birth rate (ν)
I Vaccination proportion (p)
I Transmission rate (〈β〉 or R0)

all map onto the same parameter axis.

I ∴ Summarize possible dynamical changes induced by
demographic/behavioural changes with a one-parameter (R0)
bifurcation diagram.

I ∴ Predict epidemic transitions by mapping observed changes
in ν, p or R0 onto this diagram.



Measles Bifurcation Diagram (wrt R0)

complex dynamics that are predicted (Fig. 1)
on the basis of the observed exogenous vari-
ables (birth and vaccination rates). The hori-
zontal lines in Fig. 2 are color-coded accord-
ing to the corresponding attractors in Fig. 1.

London (Fig. 2A) experienced biennial cy-
cles of measles epidemics from 1950 to 1968;
the estimated mean transmission rate for this
period (1) is ^b& . 1240, corresponding to a
biennial attractor (dark blue, see Fig. 1). Before
1950, epidemics were roughly annual; over the
same brief period the birth rate was much high-
er, which greatly increased the effective mean
transmission rate, allowing attraction to an an-
nual cycle (green, far right of Fig. 1). After
1968, recruitment rates steadily decreased be-
cause of mass vaccination (for example, when
vaccine uptake reached 60%, the effective
mean transmission rate was reduced to ^b& .
500); this brought the system into the parameter
region where there are multiple coexisting at-
tractors with extremely intermixed basins. Sto-
chastic effects do appear to cause frequent ran-
dom jumps between these attractors (6) [as we
have confirmed with Monte Carlo simulations
(14)], providing an explanation for the irregular
epidemics in the vaccine era. Alternatively, or
in addition, irregular dynamics in this region
may arise from stochastic interactions with a
chaotic repellor (15, 16). Spectral analysis of
the data in the vaccine era shows two major
peaks, at periods of 1 year and 2 to 3 years;
spectral analysis reveals similar peaks in our
Monte Carlo simulations (14).

In Liverpool (Fig. 2B) the birth rate was
much higher than the mean in England and
Wales throughout the post-war period until
1968 (12) (the birth rate in Liverpool is
drawn as a dotted red line in Fig. 2A as well,
for comparison with the birth rate in Lon-
don). This explains the roughly annual cycle
of measles epidemics over the same period.
After 1968, the combination of vaccination
and a lower birth rate brought Liverpool, like
London, into the regime where irregular dy-
namics are predicted.

Birth rates in the United States were rela-
tively low during the Great Depression.
Throughout this period, measles epidemics
were irregular in New York and Baltimore
(Fig. 2, C and D), consistent with stochastic
switching between densely intermixed attrac-
tors or a chaotic repellor. After World War
II, birth rates rose dramatically, pulling the
system out of the regime with irregular dy-
namics. In New York, the birth rate quickly
reached a plateau, apparently fixing the sys-
tem on the biennial attractor. In Baltimore,
the birth rate continued to rise, eventually
enough to bring the effective ^b& into the region
of Fig. 1 where either biennial or annual cycles
are possible (far right of Fig. 1).

Developing countries provide a final ex-
ample. There, birth rates over the periods
shown in Fig. 2 were far higher than those in

Britain or the United States (7). The demo-
graphic parameters for developing countries
during this period lie beyond the right-hand
limit of the bifurcation diagram in Fig. 1. We
therefore expect strictly annual prevaccine
measles dynamics in these countries—again
consistent with time series data (7)—and the
possibility of more complex dynamics with
increasing vaccination levels (moving the
system to the left in Fig. 1).

In addition to the transitions in temporal
dynamics, Fig. 1 may explain the desynchro-
nization of measles epidemics after the intro-
duction of mass vaccination in England and
Wales (4). After the start of mass vaccina-
tion, all cities entered the regime in which
multiple stable cycles may coexist. To main-
tain synchrony under such circumstances,
different cities must do more than remain in
phase; they must lock onto the same attractor
at all times. We expect less and less synchro-
ny as vaccination levels increase because the
basins of coexisting attractors will become
more densely intermixed (Fig. 1, upper pan-
els), increasing the probability that stochas-
ticity will cause shifts among attractors. In
addition, mass vaccination may increase the
effective magnitude of demographic stochas-

ticity, because the pool of susceptible indi-
viduals is greatly reduced.

The bifurcation diagram in Fig. 1 is plot-
ted for a particular seasonal amplitude, but
the qualitative conclusions of the above dis-
cussion are similar for a wide range of am-
plitudes. For higher seasonality, the region
with many attractors contains chaotic attrac-
tors as well. Such high seasonal amplitudes
would not change our conclusion that mea-
sles dynamics will be irregular in this region.
For lower seasonality, many of the attractor
sequences cease to exist or end at higher ^b&,
but the “ghosts of departed attractors” still
influence the dynamics for low ^b&: There are
extremely long and erratic transient dynamics
(17 ) in this region. Again, this supports our
prediction of irregularity, so we would expect
the same qualitative dynamical picture to
emerge in places that have significantly high-
er or lower externally imposed seasonality.

Ecologists often test theoretical models by
manipulating the conditions of their study
populations so as to stimulate dynamical
changes (18). For measles and other parasitic
infections, many such manipulations have
been achieved indirectly (through changes in
birth and vaccination rates) and monitored in

Fig. 1. The main panel is the bifurcation diagram for the term-time forced SEIR model, showing
incidence on 1 January, normalized by (constant) population size; the control parameter is the
mean transmission rate ^b&. The fixed parameter values are g21 5 5 days, s21 5 8 days, m 5
n/N 5 0.02 year21, seasonal amplitude 0.25 [see (5) and (13) for the meaning of these
parameters]. Each attractor is identified with a different color. For sufficiently high ^b&, there is a
unique (annual) attractor. As ^b& is reduced, biennial, 3-, 4-, 5-, 6-, 7-, and 8-year cycles all occur,
before all but the annual attractor are extinguished. The term-time forcing function used to
produce this figure corresponds to school terms in England and Wales. In the United States, the
summer holiday is longer; this does not affect the structure of the bifurcation diagram, but with a
longer summer holiday each of the various bifurcations occurs at lower ^b& (10). Above the
bifurcation diagram, basins of attraction (initial susceptibles, 0 , S0/N , 0.1, versus initial
infectives, 0 , I0/N , 0.0001, with E0/N 5 0.0001) are shown for the various attractors at four
particular values of ^b&. Figure 2 identifies regions of this diagram that correspond to the dynamics
observed at various times and places.

R E P O R T S
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Measles in Liverpool, England

1950 1960 1970 1980 1990

0

5

10

15

20

25

Time

√
w
ee
k
ly

ca
se
s

births

susceptible
recruitment

vaccination

0 1 2 3 4 5 6

0

200

400

600

S
p
ec
tr
al

d
en

si
ty

Period (years)

Predicted: 1-year or 2-year cycle
Observed: mixture of 1- and 2-year cycles

Predicted: multiple co-existing stable cycles
Observed: irregularity; 2.5 year spectral peak

Predicted: no cycle (above herd immunity threshold)
Observed: noise only

1
2
3
4
5
6
7
8



Measles in New York City
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Measles in Baltimore
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What about other notifiable childhood infectious diseases?

I Does same analysis explain patterns of recurrent epidemics for
rubella? chicken pox? whooping cough?

I Alas! No!

I Only attractor of term-time SEIR model for rubella, chicken
pox, or whooping cough is annual cycle.

I Yet these diseases show much more complex dynamics!



1939 weekly infectious disease notifications in Ontario



1939 weekly infectious disease notifications in Ontario



Other Childhood Infections (not measles)
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Incidence time series of these diseases show strong spectral peaks
at periods not predicted by asymptotic analysis
(i.e., not displayed by attractors of term-time SEIR model)

Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573–1578

https://davidearn.mcmaster.ca/publications/BauchEarn2003a


Argh!



What are we STILL missing?



Demographic Stochasticity Comes to the Rescue (Again!)

I Sustains transient behaviour

I Linear perturbation theory applied to the attractors of the
model explains other spectral peaks in data

I Whew!

Get More Ambitious!

I Aim to predict all spectral peaks in the data

I Asymptotic analysis −→ spectral peaks from attractors

I Perturbation analysis −→ spectral peaks from transients
Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573–1578

Krylova & Earn (2013) J. R. Soc. Interface 18(10):20130098

Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024

https://davidearn.mcmaster.ca/publications/BauchEarn2003a
https://davidearn.mcmaster.ca/publications/KrylovaEarn2013
https://davidearn.mcmaster.ca/publications/HempelEarn2015
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I Great! Can we successfully predict even more detail?

https://davidearn.mcmaster.ca/publications/BauchEarn2003a


Can we predict magnitudes of spectral peaks?

Example:
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Modelling recurrent epidemics: Summary so far

I Good understanding of recurrent epidemic patterns of many
infectious diseases in the 20th century
(e.g., measles, chicken pox, whooping cough, rubella, . . . )

I Perfect prediction of spectral peaks from attractors

I Excellent prediction of spectral peaks from transients

I Population size is key determinant of relative magnitude of
peaks from attractors vs. transients
(confirmed with stochastic simulations)



Modelling recurrent epidemics: Recent developments

I Extend time series further back in time
I Does theory still allow us to predict epidemic transitions?

I Measles in New York City, 1891–1984
I Success!

Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024

I Key challenge that had to be overcome:
changing patterns of seasonal variation in contact rates

Papst & Earn (2019) J. R. Soc. Interface 16:20190202

Jagan et al. (2020) PLoS Comp. Biol. 16(9):e1008124

I Smallpox in London, 1664–1930
I Many observed epidemiological transitions, correlated with

policy changes and historical events

Krylova & Earn (2020) PLoS Biology 18(12):e3000506

I Dynamical transition analysis in progress

https://davidearn.mcmaster.ca/publications/HempelEarn2015
https://davidearn.mcmaster.ca/publications/PapstEarn2019
https://davidearn.mcmaster.ca/publications/JaganEtAl2020
https://davidearn.mcmaster.ca/publications/KrylovaEarn2020
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Sources of mortality data for London, England

Wills Parish Registers Bills of Mortality

Catalogue Reference:PROB/10/642

since 1258 since 1538 since 1563
(continuous since 1661)

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703–27711

https://davidearn.mcmaster.ca/publications/EarnEtAl2020
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14th c. plague epidemics in London
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17th c. plague epidemics in London
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Is it OK to compare
results based on wills
with results from
mortality data?
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Compare growth rates of plague epidemics in London

I Property of the epidemic curve (the data alone)

I Estimate without assumptions about processes that generated
the data (since we don’t know the mode of transmission)

I human-to-human (pneumonic plague)

I rat-to-flea-to-human (bubonic plague)



Estimating the initial growth rate of an epidemic
I Näıvely, we just fit a straight line to the log of the mortality

time series.
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Estimating the initial growth rate of an epidemic

Instead fit a saturating rather than a purely exponential curve.
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I Both curves have same initial exponential growth rate r .

I Test extensively using simulated epidemics for which we know
the correct answer.

Ma, Dushoff, Bolker, Earn (2014) Bull. Math. Biol. 76:245–260

https://davidearn.mcmaster.ca/publications/MaEtAl2014


Initial growth rates for plague in London, 1348–1665

I Later plagues grew 4× faster than early plagues!

Doubling time:
I In 1348: ∼ 45 days
I In 1665: ∼ 11 days

I Why did plague epidemics “accelerate”?
I Evolution of increased infectiousness? longer infectious period?

I Changes in population density? social structure? contact
patterns?

I Changes in weather?

I Bubonic vs. pneumonic plague?

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703–27711

https://davidearn.mcmaster.ca/publications/EarnEtAl2020


Bubonic or pneumonic plague?

Suppose pneumonic plague during second pandemic was exactly
like modern pneumonic plague.

I Pneumonic in 14th century London?
=⇒ ∼ 20% of population infected

BUT ∼ 30– 50% of total population died in 1348

=⇒ early plagues probably not (primarily) pneumonic

I A remarkable inference to be able to make based on counting
wills! (and a little mathematical modelling)

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703–27711

https://davidearn.mcmaster.ca/publications/EarnEtAl2020


Outline

I Predicting patterns

of epidemic recurrence

I Puzzles presented by

plagues of the past

I Forecasting the future:
modelling and policy



SARS
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Daily SARS-CoV-2 in 2020–2021 (Worldwide)
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SARS-CoV-2
in Ontario
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Modelling SARS-CoV-2 / COVID-19

Much richer data (compared with historical epidemics):

I Daily counts of positive tests, hospital occupancy, ICU
occupancy, deaths, . . .

I Daily vaccine doses administered

I Daily measures of weather, mobility

I Info on policy changes, travel restrictions, new virus variants,
. . .

Harder problem:

I Forecast the future!



Modelling SARS-CoV-2 / COVID-19

Approach:

I Expand SEIR model to include compartments for cases,
deaths, hospital occupancy, etc

I Simultaneously fit model to all the types of data we have

I Predict the future based on various scenarios

Interpret forecasts with caution:

I Quantify uncertainties we understand
(parameter estimates, observation and process noise)

I Be aware that models cannot capture all processes
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Announcements

Draft Project Description Document is posted.
The project is to be submitted as a paper in the style of a
research article for publication. It is not just a big assignment.
The project descriptions ask you questions and suggest
directions for investigation, but you must construct the final
document as a coherent single manuscript, not answers to a
bunch of questions.

Midterm test:
Date: Tuesday 5 November 2024
Time: 2:30pm – 4:30pm
Location: in class, HH-102

Assignment 4 is due the day of the midterm.
Due Monday 4 November 2019 before class.

Make sure you personally can do the question on calculating
R0 on this assignment before the midterm test.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://davidearn.github.io/math4mb/project/project.html
http://davidearn.github.io/math4mb/assignments/assignments.html
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R0: biological definition

The basic reproduction number R0 is:
the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective
individual

e.g., Anderson and May (1991) “Infectious Diseases of Humans”

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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R0: more mathematical definition

The basic reproduction number R0 is:
the number of new infections produced by a typical infec-
tive individual in a population at a disease free equilibrium
(DFE)

van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29–48

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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R0: most mathematical definition

The basic reproduction number R0 is:
the spectral radius of the next generation operator at a
disease free equilibrium (DFE)

Diekmann, Heesterbeek & Metz (1990) J. Math. Biol. 28, 365–382

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Definitions from matrix analysis

Definition (Spectrum of a matrix)

Let M be an n × n real (or complex) matrix. The spectrum of M
is

σ(M) = {λ : Mv = λv for some non-zero v ∈ Cn} ,

i.e., σ(M) is the set of eigenvalues of M.

Definition (Spectral radius of a matrix)

Let M be an n × n real (or complex) matrix. The spectral radius
of M is

ρ(M) = max{|λ| : λ ∈ σ(M)} ,

i.e., ρ(M) is the maximum modulus of the eigenvalues of M.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Computing R0

In very simple models, R0 is the product of the transmission rate
and the mean time in the infectious class. e.g., In the SIR model
with vital dynamics,

R0 = β · 1
γ + µ

.

When there are multiple infected classes, it is more complicated to
compute R0.
In the SEIR model, we found (based on a biological argument) that

R0 = β · σ

σ + µ
· 1

γ + µ
.

Mathematically, the spectral radius of the next generation operator
at the DFE is exactly this quantity. With this definition, it is also
true that the disease persists if R0 > 1 and goes extinct if R0 < 1.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR model (with vital dynamics)

dS
dt = µN − βSI

N − µS

dE
dt = βSI

N − σE − µE

dI
dt = σE − γI − µI

dR
dt = γI − µR

Birth and death rate (µ)

Transmission rate (β)

Mean latent period (1/σ)

Mean infectious period (1/γ)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Next generation matrix for the SEIR model

Consider flows in and out of the infected compartments, and
highlight flows that correspond to new infections:

d
dt

(
E
I

)
=
(

βSI − σE − µE
σE − γI − µI

)

F = inflow of new infecteds
to infected compartments =

(
βSI
0

)

V = outflow from infected compartments
minus inflow of non-new infecteds =

(
σE + µE

−σE + γI + µI

)

Let F = linearization of F at DFE
Let V = linearization of V at DFE
Then the next generation matrix is FV −1

Analogous to βγ−1 in simple case.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Interpretation of FV −1 as next generation matrix

Almost verbatim from p. 33 of van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29–48

To interpret the entries of FV −1 and develop a meaningful
definition of R0, consider the fate of an infected individual
introduced into compartment k of a disease free population.
The (j , k) entry of V −1 is the average length of time this individual
spends in compartment j during its lifetime, assuming that the
population remains near the DFE and barring reinfection.
The (i , j) entry of F is the rate at which infected individuals in
compartment j produce new infections in compartment i .
Hence, the (i , k) entry of the product FV −1 is the expected number
of new infections in compartment i produced by the infected
individual originally introduced into compartment k.
Following Diekmann et al. (1990), we call FV −1 the next
generation matrix for the model and set

R0 = ρ(FV −1) ,

where ρ(A) denotes the spectral radius of a matrix A.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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R0 via FV −1 for the SEIR model

F =
(

βSI
0

)
V =

(
σE + µE

−σE + γI + µI

)

F =
(

0 β
0 0

)
V =

(
(σ + µ) 0

−σ (γ + µ)

)

V −1 =
( 1

σ+µ 0
σ

(σ+µ)(γ+µ)
1

γ+µ

)
=⇒ FV −1 =

(
βσ

(σ+µ)(γ+µ)
β

γ+µ

0 0

)

R0 = ρ(FV −1) = βσ/(σ + µ)(γ + µ)
Note wrt previous slide that the (2, 1) entry of V −1 is the average
time an individual who enters the E compartment spends in the I
compartment: only a proportion σ/(σ + µ) of such individuals make
it to the I compartment, where the average time spent—by
individuals who get there—is 1/(γ + µ).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Computing R0 for other compartmental ODE models

The method applied in the previous slides to obtain R0 for the SEIR
model works more generally for a very large class of “reasonable”
infectious disease ODE models. “Reasonable” means:

1 The vector field can be written F − V, where F ≥ 0 corresponds to
new infections and V can be written V = V+ − V−, where V+ ≥ 0
corresponds to outflow and V− ≥ 0 corresponds to
inflow of infectives that are not new.

2 The biologically relevant part of the state space is forward-invariant.
In particular, if a compartment is empty, then there can be no
transfer of individuals out of the compartment by death, infection,
nor any other means.

3 The DFE is stable in the absence of new infection (if there is more
than one DFE, R0 may depend on which one we focus on).

4 The population size N is constant (or the model is expressed in
terms of proportions in each compartment).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Computing R0 for other compartmental ODE models

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model
satisfies the conditions specified on the previous slide, then

1 R0 can be computed as ρ(FV −1);
2 if R0 < 1 then the disease-free equilibrium (DFE) is locally

asymptotically stable (LAS), whereas if R0 > 1 then there is a
LAS endemic equilibrium (EE).
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R0 calculation: summary

The biological method of deriving R0 is generally more
informative in terms of what is going on. But it can be
challenging to apply to complex models.

The formal approach, i.e., R0 = ρ(FV −1), works in almost
any situation you will encounter, even very complicated
models with many compartments.

If possible, it is best to use both methods to find an
expression for R0, and make sure they agree.

A completely different challenge is to estimate R0 for a real
epidemic from data. . .
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Estimating R0 based on the SEIR model

If the SEIR model captures the natural history of some disease
well, how can you estimate R0 = βσ

(σ + µ)(γ + µ) ?

Mean latent period 1/σ

Mean infectious period 1/γ

Birth rate µ

Estimate β via initial growth rate r :
For the simplest SIR model, r = β − γ so β = r + γ.

More generally, r is the largest positive (or least negative) real
part of the eigenvalues of F − V .

For SEIR model we find:

r = 1
2

(√
4βσ + (γ − σ)2 −

(
γ + σ + 2µ

))

Solving this for β we obtain: β = (r + σ + µ)(r + γ + µ)
σ

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in New York City, 1891–1984 (success!)

meas.wk[, "numdate"]
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Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024

I Key challenge that had to be overcome:
changing patterns of seasonal variation in contact rates

Papst & Earn (2019) J. R. Soc. Interface 16:20190202

Jagan et al. (2020) PLoS Comp. Biol. 16(9):e1008124

https://davidearn.mcmaster.ca/publications/HempelEarn2015
https://davidearn.mcmaster.ca/publications/PapstEarn2019
https://davidearn.mcmaster.ca/publications/JaganEtAl2020


Smallpox in London, 1664–1930 (in progress)

PLOS BIOLOGY Patterns of smallpox mortality in London, England, over three centuries

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000506 December 21, 2020 9 / 27

Krylova & Earn (2020) PLoS Biology 18(12):e3000506

https://davidearn.mcmaster.ca/publications/KrylovaEarn2020


The Great Plague of London, 1665
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SEIR Model Fit to the Great Plague of London

May Jul Sep Nov Jan
0

1000

2000

3000

4000

5000

6000

7000

● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

Date

           Weekly Deaths from Plague

Data
Model

●


	Demographic Stochasticity
	School Terms
	Sinusoidal SEIR Model
	What else?

