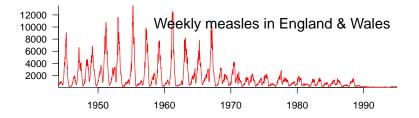
Infectious Disease Dynamics from the Black Death to COVID-19

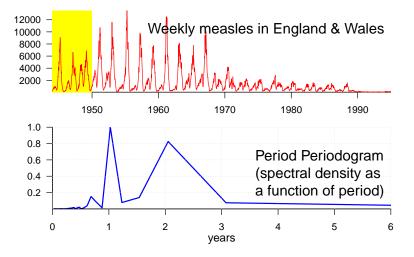
David Earn Mathematics & Statistics McMaster University

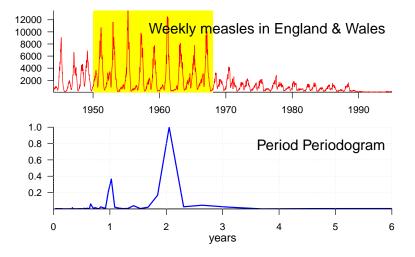
Outline

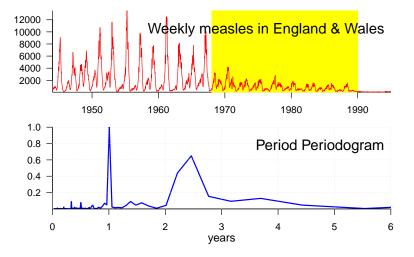
- Predicting patterns of epidemic recurrence
- Puzzles presented by plagues of the past
- Forecasting the future: modelling and policy


Outline

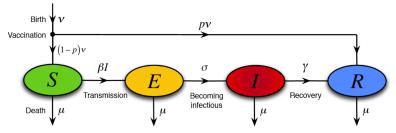
Predicting patterns of epidemic recurrence


 Puzzles presented by plagues of the past


 Forecasting the future: modelling and policy


20th century measles dynamics in England and Wales

- Annual epidemics, then biennial, then irregular
- Why is the pattern of epidemic recurrence so complicated?
- What causes changes in frequency content over time?



SEIR model

$$\frac{dS}{dt} = \nu(1-p) - \beta SI - \mu S$$

$$\frac{dE}{dt} = \beta SI - \sigma E - \mu E$$

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \nu p + \gamma I - \mu R$$

- Birth rate (ν for natality)
- Death rate (μ for mortality)
- Proportion vaccinated (p)
- Transmission rate (β)
- Mean latent period ($T_{\rm lat} = 1/\sigma$)
- Mean infectious period $(T_{inf} = 1/\gamma)$

SEIR with vital dynamics and vaccination: Analysis

Two Equilibria

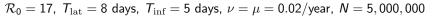
- Disease Free Equilibrium (DFE)
- Endemic Equilibrium (EE)
- Periodic solutions ? Chaos? No.
- Basic reproduction number R₀: expected infections from one infected entering a wholly susceptible population
 - $\begin{array}{ll} \blacktriangleright & \text{Biological derivation: (assuming } \nu = \mu \text{ and } p = 0) \\ \mathcal{R}_0 = \beta \times \frac{\sigma}{\sigma + \mu} \times \frac{1}{\gamma + \mu} & \simeq \beta \gamma^{-1} & \because \frac{1}{\mu} \gg \max\left(\frac{1}{\sigma}, \frac{1}{\gamma}\right) \end{array}$
 - Mathematical derivation:

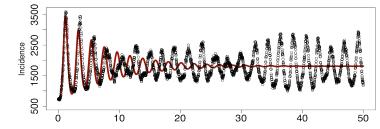
 *R*₀ = 1 is stability boundary

van den Driessche & Watmough 2002 Mathematical Biosciences <u>180</u>:29–48

- EE is globally asymptotically stable (GAS) if R₀ > 1; DFE is GAS otherwise.
- Approach to EE is typically via *damped oscillations*.
- But observed recurrent epidemics are undamped.

What are we missing?




Populations are finite: demographic stochasticity

- ▶ Differential equations describe the expected behaviour in limit that population size $N \rightarrow \infty$
- Re-cast the SEIR model as a stochastic process (continuous time Markov jump process)
- Simulate with standard Gillespie algorithm

Gillespie 1976, J. Comp. Phys. 22, 403-434

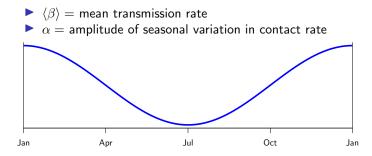
Gillespie Simulations: SEIR Results for Measles Parameters

Earn (2009) IAS/Park City Mathematics Series 14:151-186

- Demographic Stochasticity sustains transient behaviour (oscillations do not damp out) (Bartlett 1950's)
- Explains undamped oscillations at a single period
- But, unable to explain changes in interepidemic period, or irregularity, as observed

What are we **STILL** missing?

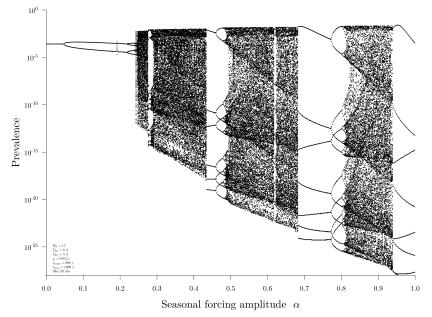
Contact rates are higher during school terms!

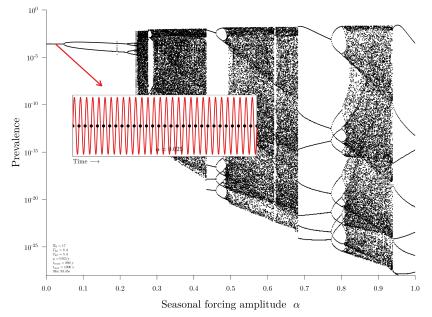

Sinusoidal SEIR Model

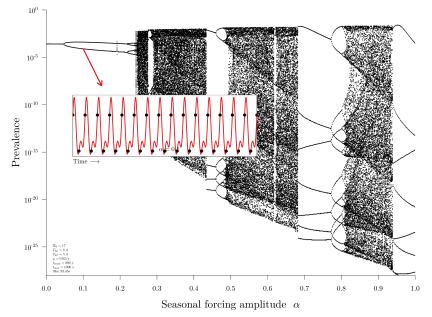
Transmission rate β is not constant: high during school terms, low in summer

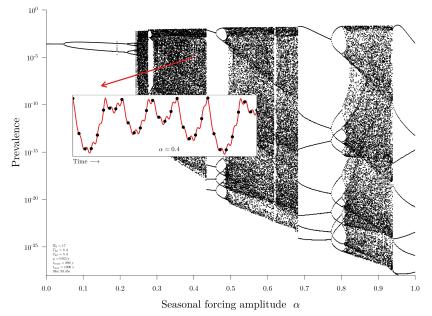
London WP, Yorke JA, 1973, Am. J. Epidemiol. 98, 453-468

For simplicity, model as a sine wave:


$$eta(t) = \langle eta
angle \left(1 + lpha \cos 2\pi t
ight)$$



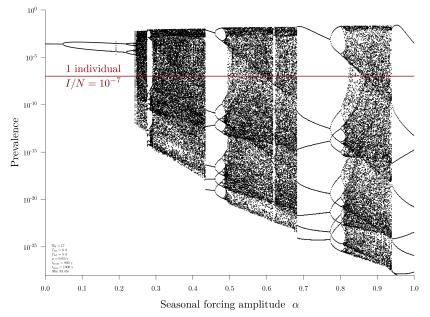

 $\beta(t)$


Is this change significant?

- We now have a forced nonlinear system
- Forcing frequency can resonate with the natural timescales of the disease (*e.g.*, period of damped oscillations)
- Very rich dynamical system... (analogy: forced pendulum)

Sinusoidal SEIR Model: Does it explain measles dynamics?

SEIR model with sinusoidal forcing:

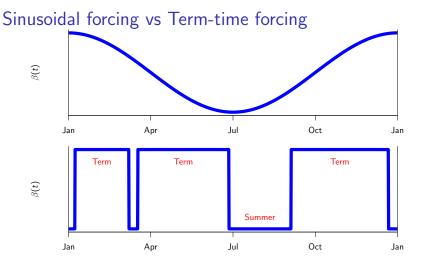

Produces recurrent undamped epidemics of all frequencies observed in measles time series.

Schwartz IB, Smith HL, 1983, J. Math. Biol. 18, 233-253

Produces chaos, which can explain irregular behaviour and transitions from one type of cycle to another

Olsen LF, Schaffer WM, 1990, Science 249, 499-504

- If correct, this implies these transitions are unpredictable.
- BUT... the model also predicts rapid extinction of the virus (not persistence).



What are we **STILL** missing?

Contact rates are higher during school terms!

<u>Term-time</u> SEIR model *predicts a strictly biennial cycle of measles epidemics, at all times and places.* Is superb agreement with post-war measles dynamics

coincidental???

What **ELSE** might we be missing?

Key Insight

- Suppose \mathcal{R}_0 is estimated when the birth rate is ν .
- If the birth rate changes, v → v', then the dynamical effect is identical to changing R₀ instead:

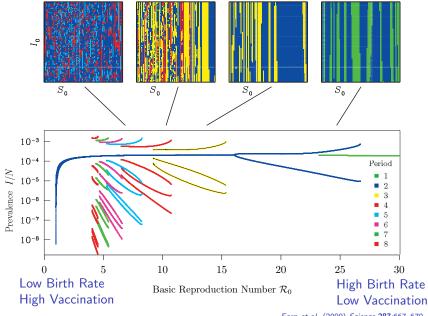
$$\mathcal{R}_0 \longrightarrow \mathcal{R}_0 rac{
u'}{
u}$$

- More generally, any change in susceptible recruitment rate is equivalent dynamically to a change in R₀.
- A change in birth rate v → v' together with a change in vaccine uptake p → p' is dynamically equivalent to

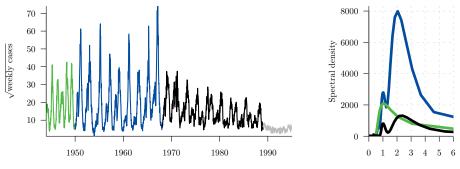
$$\mathcal{R}_0 \longrightarrow \mathcal{R}_0 rac{
u'(1-p')}{
u(1-p)}$$

Earn et al. (2000) Science 287:667–670 Earn (2009) IAS/Park City Mathematics Series 14:151–186

Predicting Epidemic Transitions


Changes in

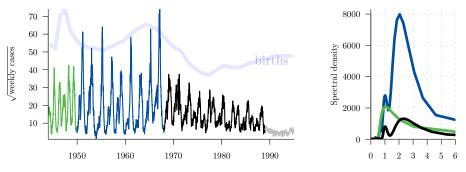
- Birth rate (ν)
- Vaccination proportion (p)
- Transmission rate ($\langle \beta \rangle$ or \mathcal{R}_0)


all map onto the same parameter axis.

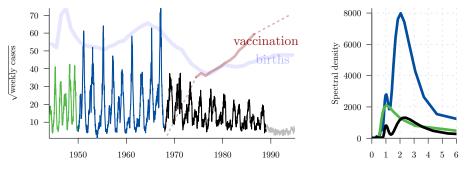
- ► .:. Summarize possible dynamical changes induced by demographic/behavioural changes with a *one-parameter* (*R*₀) *bifurcation diagram*.
- ... Predict epidemic transitions by mapping observed changes in ν , p or \mathcal{R}_0 onto this diagram.

Measles Bifurcation Diagram (wrt \mathcal{R}_0)

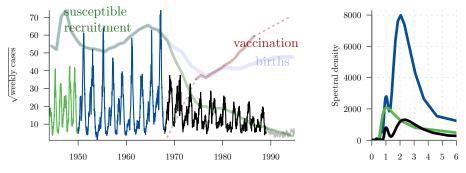
Earn et al. (2000) Science 287:667-670

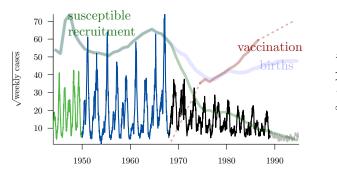


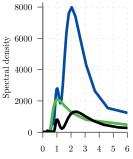
Period (years)


• 1-year cycle

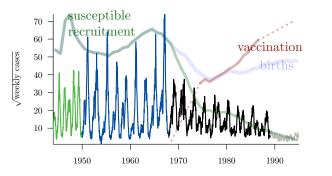
- 2-year cycle
- irregularity; 2.5 year spectral peak

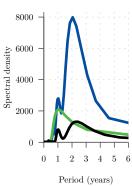

noise only

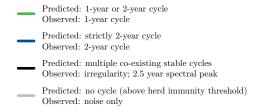

Period (years)



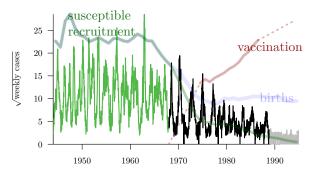
Period (years)

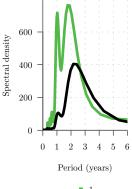

Period (years)

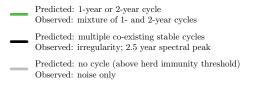




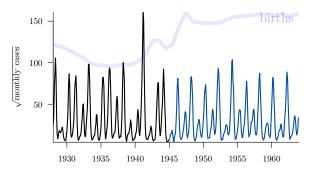
Period (years)

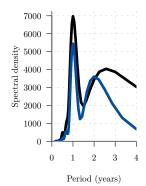


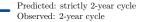


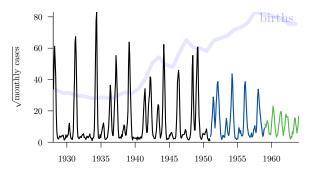


Measles in Liverpool, England

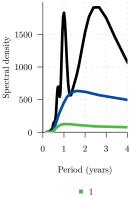





Measles in New York City



Predicted: multiple co-existing stable cycles Observed: irregularity; 2.8 year spectral peak


Measles in Baltimore

Predicted: multiple co-existing stable cycles
 Observed: irregularity; 2.8 year spectral peak

Predicted: 1- or 2-year cycle Observed: 2-year cycle

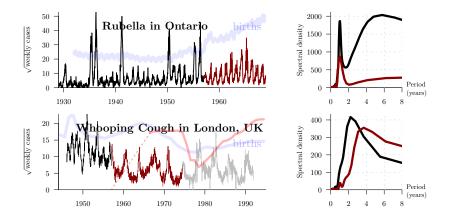
Predicted: 1- or 2-year cycle Observed: 1-year cycle

What about other notifiable childhood infectious diseases?

Does same analysis explain patterns of recurrent epidemics for rubella? chicken pox? whooping cough?

► Alas! No!

- Only attractor of term-time SEIR model for rubella, chicken pox, or whooping cough is annual cycle.
- Yet these diseases show much more complex dynamics!


1939 weekly infectious disease notifications in Ontario

200	1	VEAT	: 1939		ALL NUT Y				Pr	our	ne	-	07		0	nte	are	ð.			CODUI	ITION							
2717	ñ	TEAB	1: 1939	* 00	DUNTY								TUNICI	PALITY.							OPUL	ATION.							
Pint	-	Month	Week End.		P. DIF					FLU.	INF. JAUN			AS. NUMP		All Forms			S.S.T.		SYPH				W.C.	Purp		7720	med &
1.8	ł.				DC	the second second				-				DCD			CI	DCI					-				DC	D C	D
ALL.	0	Jan.	14 22	2 1 490	10000	03	0 0 1	50	89 0	21 1	17 0 18 0 26 0	17 18 22	0 670 0 850 0 932	1 56 0 0 92 0 0 98 0	20	40 % 76 24 42 36 49 29 57		184 1 2031 219 1	151		41 0	64 10 5	40	10	3350	01		1 12	0
		ŀ	2% 4 Total	1 0 58	F 0 2	0	0 0 1	20	13 C	164 0	10 0	28	0 983	1 240	2, 1	29 57		1954	10		531	50 6	10	10	3430		1.	1	
	-1	Feb.	4- 5	2 1 36	00122	0 /	0	7041	83 0 82 0 68 0	27 /	350	29	0 1335 0 1033 0 1161	0 91 0	1 4	27 49 30 60 32 52	10	2362	20		590	60 6 45 15 42 11	30	10	283 0	0	1	0 2	0
-	-		25 8 Total	1 1 30	802	0	-	90	560	177 0	190	28	0 999	0 73 0		39 58		187 1	140	10	540	43 12		0.0	278 0				
	1	Mar.	4 9 11 10 18 11 25 12	239	0		0	7867	660	1114 19 1371 8 1322 6 806 16	2100	40 32 59	0 1131 0 845 0 969 0 879	2 149 0 0 91 0 2 49 0 0 120 0	20	4782 73 80 48 60 41 88		207 23	60		612	47 13 58 4		30	270 1 171 1 2 43 0				
	1	_	Total	2 3 9 1	01	010		189	2830	306 /6	66 0	xo	0 3814	0 120 0		209 310		172 0	140		65 0	41 8	30	20	195 2	01		-	
		Apr.	1 13 8 14 15 15 32 16 29 17	2 0 162	0 1	0 1 0	01	800	90 0 67 0 41 0 64 0	467 6 731 22 529 16	1 200	14	0 950 0 790 0 745	0 650	3 0	54 59 36 93 47 80		140 1 176 1 126 0	30		551	51 7 30 16 59 7	20		159 1 199 3 135 0				
			22 16 29 17 Total	5 1 167	04	0 2 0	21		550	124 9	21	13	0 845	1 120 0		45 55 20 66		148 4	60		70 0	42 4	92	10	149 1				
	MUNICIPALITY.	May	6 18 13 19 20 20 27 21	4-1 115	14 .	0 2 0	31	410	71 0 83 0 69 0	76 3 307 6 27 2	12	53	0 877 0 126 0 760 0 904	0 99 0	20	12 51 45 36 42 50 24 55		157 1 120 0 104 0	10		59 03	65 6		120	184 0	0			
	ICIP				0 3	0 3 6	31	40	2620	416 12	90	130	- 936	0 250				111 0	11		471	61 6	10	30	133 0		2	-	
2	MUN	June	1 0 28	2 2 27	1 - 2	0 2 0		2121	127 0	1500	2 0	12.	0 1229 0 720 0 715	1 570	10	16 20 12 31 18 40 11 20	100	1120	16 0		90 1	56 9	20	20	98 0	1			
2		July	Total	A 2 354	0	0 4 0						31	0 582	2 266 0	10	5 11	20					73 8	61	30	101 1	1	0		0
	1	suly	× 15 28 329 30	0 1 98	10000	0		15-00	80 0		400	5	0 409	2 22 0		14871	392 44	707246	20		68 Z 68 Z 80 D 54 I	73 8 10 15 9 7 15 7 7 7 7 7 7 7	+5+0		900	20	1	1	00
TT	1	Aug.		3 0 117	0 10	0 31	2 2	60	360 0	50	40 0	115	0 2016	1430	30				13 0		347 6	294 49	11 2	20			4	2 3	0 1
		Aug.	19 33	6 0 57	0 2	: 4 0	1 0	10	75 0	5100	13200	17	0 82	0 70	0000	18 12	501	470	70		5801	60 7	0000	1030	61 0	21			1
		Sept.	Total 2 35 9 36	102.	0 2	0		3020	93 0	22 0	80	10.	0 32	0 120				17 0	13 0		520	35 4	241	60	62 0 86 0	26	10		K
	-	-	16 37 23 38 30 39	10027	20 1	0 20	0	10	107 0	60	40	24-	0 43	0 120	142	15 19 2 22 8 21	13 0 23 2 16 1	70 1 59 0 1 29 0	3 0		51 0 1 2		1200	5200	69 1		121	0	
-	-					0 1 0	2	70	1010	15 0	20	21	0 11.9			8 23	14 0	89 0	20		17 0	45 6	40	20	312 1		4	1	H
		Oet.	74 40 74 41 24 42 28 43 Total	1 0 141	144	0 12 0	2	30	81 0	20	11 0	1075	0 124	14457	1 0	19 3343	12201	135 2			48131	48 6	200	20	530			1	0
	-	Nov.	4 44	20100	50 3	0 1 1	0	80	61 0	551	13 0 4 0	21	0 110	68 0	20	19 27		157 0	250		77 1	45 6	1200	10	2001 530 541 850	1 0	10	> /	0
	COUNTY.	1404.	18 46	380	000	00	61	320	88 0	1200	467	4	0 251 0 228 0 270	0 400	10	19 27 34 33 16 29	0000	1520019802	410		7200	45 6 37 3 57 3 39 3	00000	10	620	11	22	1 5	0
	0	-	Total 2 48	10 1 1190	0 15	141	0 2	110		413					12 0	26 33	120	206 0	350		7921		130	20	2541	21	31	2 1	0
		Dec.	9 49	1 0 501	03	000		1132	69.97	1010	5418	74	0 294 0 279 0 311 103	0 139 0 163 0 122 0	10	20 30 28 40	20	1941 136 1 162 0	50		490	361764	7230	82	870	01	10		•
		189	30 52	3.58	0 2	001		20	640	42 0	050	150	295	980	10	25 37	10	165 1	01		53 0	32 4			62 0	81			1
		-	Total	- E 0 2115	01.0	0 0		118 0	1385 B	115 2	XOI	A Cil	SISS CAL	11 614 0	4 7	11 1 197	6 2	4412	53	111-00	197.3	1104 12	4. 2	11 0	146 2	01			

1939 weekly infectious disease notifications in Ontario

	A E	с	D	E	F	G	н	1	J.	К	L D	M N	0 1	Q	R S	т	J V	W	х	Y	Z AA	AB	AC	AD AI	E AF	AG	AH	AI A	U AI	AL.	AM	AN AO	APAQ	AR A	S A	T AI	J AV	AW.	X AY	AZ	BA BE	B BC	BD B	JE BR
1																							Prov	rince of C	Intar	rio																		
2				YE	EAR: 1935																																							
3	Tularaemia cases		 Actinomycosis 	Month	Dav	Week	CSN		C.P		DIP.	Di		EN. ETH.	ERYS.	G.C.	F	ω.	INI		G.M.	MEAS		MUMPS	PA		PN. All Form	16	POL.	s	F.	5.5.T.	SP.	SYPH.		т.в.	TYP	н.	U.F.	wa		uerp ept.	Tetan	M
	a cases	Malaria	V/005												c p			D	c				D			0.0				c					c		c				D C	D		n c
5	ar a	. 5	a.		7		C D	, L	452	D C	3	_	DC	U	C D	101		8	1 17	DC	D 17 0	670	D	C D			2 D	76	D	184	D	10	CD	-	-	D 64 1	0 1	0	: D 3 0			-		
7				Jan.	14	2	2	1	490		8				5 0	82			1 18		18 0	850	0	92 0		1 0	24	42	-	203		6 1					5	Ŭ	3 0	335	0		-	^ ^
8				Parts.	21	3		1	511		9			2 1	5 0	89			2 26		22 0	932	0	98 0			36	49		219		15 1					-	0	1 0					
9					28			0	384		2			· •	2 0	73			0 10		28 0	933	1	24 0			29	57	-	195		1 0		53			6		1 0		0	· •	1	
10					Total	4	5		1837		22		0	1	17 1		0 20		4 71		85 0	3385	2	270 0		3 0		224	-	801		23 2		218				0	5 0		0 (3		
11			1		4	5	-	~	355		7		0	1	3 0	83		7	1 24		25 0	1335	1	110 0		2 0	27	49	-	236		2 0		76			6	Ŭ	-	283	0		-	11
12			- 1	Feb.	11	6	2	1	363		1		0		7 0	82			1 41		29 0	1033	0	91 0		1 0	30	60	1			2 0		59			5	H	1 0		1 0	1	1	0
13					18	7	2	1	354		2		Ľ		4 1		0 10		1 35		44 0	1161	0	59 0			32	52	-	215		2 0		60				0	1 0				1	11
14			1		25	8	1	1	308		2				9 0		0 17		0 19		28 0	999	0	73 (39	58		187		14 0	1 0	54			2			278				
15			2		Total	-	5	3	1380		12		0		23 1		0 36		3 119		126 0	4528	1	333 0		3 0		219	1			20 0	1 0	249				0	2 0			1	1	0
16		1	1		4	9	1	1	271		7		1		7 0	93			9 21		40 0	1131	2	109 0	1	1 0	47	82		207		4 0		102			3 1	0	2 0			1		1
17				Mar.	11	10			239	0	7	0 2	0		8 1	61	0 137	1	8 31	0	32 0	845	0	91 0	2	2 0	73	80		196	5 3	4 0		68	0	58	4		1 0	171	1			1
18					18	11			166	0					6 0	66	0 132	2	6 5	0	59 0	969	2	69 0	0 0	0	48	60		170	1	6 0		61	2	64 1	.0		3 0	223	0			
19					25	12	1	2	236	0	1	0 1	0		7 0	63	0 80	6 1	6 9	0	20 0	879	0	120 0)		41	88		172	0			65	0	41	8 3	0	2 0	195	2			1
20		1			Total		2	3	912	0	15	1 6	1		28 1	283	0 461	3 4	9 66	0	151 0	3824	4	389 0	3	0	209	310		745	6	14 0		296	3 2	10 3	15 4	0	8 0	859	4 0	1		
21					1	13	2	0	139	0	3	0 1	0		8 0	95	0 66	7	6 1	0	24 0	950	0	89 0	3	3 0	54	59		140	1	12 0		88	0	51	7 2	1	1 0	159	1			
22				Apr.	8	14	2	0	162	0	1	0 1	0		5 0	67	0 73	1 2	2		14 0	790	0	65 0) 1	10	36	93		176	5 1			55	1	30 1	.6 2	0		199	3			
23					15	15	2	0	108	0	1	0		1	11 0	41	0 52	9 1	6 2	0	16 0	745	0	56 0)		47	80		126	5 0	3 0		47	0	59	7 2	1		135	0			
24					22	16	1	1	134	0	2	0 1	0	1 1	6 0	64	0 24	5	8 2	0	26 0	845	0	54 0)		45	53		148	3 4	1 1		70	0	61 1	0 1	0	1 0	149	1			
25					29	17	5	1	167	0	4	0 2	0	2 1	3 0	55	0 12	4	9 2	1	13 0	746	1	120 0)		20	66		157	2	6 0		55	0	42	4 2	0		154	0			
26					Total		12	2	710	0	11	0 5	0	3 3	33 0	322	0 229	6 6	1 7	1	93 0	4076	1	384 0	4	\$ 0	202	351		747	8	22 1		315	1 2	43 4	14 9	2	2 0	796	5			
27					6	18	2	0	104	0	1	0 2	0		4 0	71	0 7	6	3 1	0	14 0	877	0	63 () 3	3 0	12	51		157	1	1 1		59	0	65	6		1 0	184	0			
28				May	13	19	2	0	146	0	4	0 2	0	3 1	7 1	83	0 30	7	6 2	0	53 0	726	0	99 () 2	2 0	45	36		120	0 0	3 0		64	3	54 1	.3		2 0	170	0			
29					20		4	1	115	0			T		1 0	69	0 2	7	2	T	47 0	760	0	82 0)	T	42	50		104	0	1 0		68	2	60 1	1	ΓT		123	0 0	1		
30				1	27	21	0	2	112	0	3	0 1	0		4 0	39	0	6	1 4	0	25 0	904	0	41 () 2	2 0	24	55		111	ιo	2 0		47	1	61	6 1	1		133	0 0	1		
31					Total		8	3	477	0	8	0 5	0	3 1	16 1	262	0 41	6 1	2 7	0	139 0	3267	0	285 0	7	7 0	123	192		492	2 1	7 1		238	6 2	40 3	16 1	1	3 0	610	0 0	2		
32					3	22			166	0	2	0 1	0		2 0	71			0 1	0	26 0	936	0	73 (4	\$ 0	16	20	1	122	2 0	20		80			8 1	0	1 0	96	0			
33				June	10	23			274	0	2	0 2	0		1 0	127	0 1	5	0 2	0	72 0	1229	1	57 0) 1	10	12	31		112	2 0	4 0		90	1	56	9 2	0	2 0	98	0			
34		2		l i	17	24	2	2	215	0		1	0		2 0	82	0	3	0		125 0	720	0	74 (1	1 0	18	40	1	80	0 0	3 0		51	1	50 1	4 1	1	2 0	81	0 1	1		
25					24				100	0	3	0			1 0	77	n	•	1 0	4	61 0	705	-1	62 (1	10	11	20	3	0	2 0	1 0		79	2	63	6 3	0		101				11
4	Þ	Ontar	lo 1939	9 Ter	mplate	+																																						- 1

Other Childhood Infections (not measles)

Incidence time series of these diseases show strong spectral peaks at periods not predicted by asymptotic analysis (*i.e.*, **not** displayed by attractors of term-time SEIR model)

Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573-1578

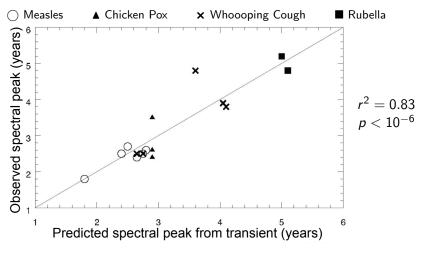
Argh!

What are we **STILL** missing?

Demographic Stochasticity Comes to the Rescue (Again!)

Sustains transient behaviour

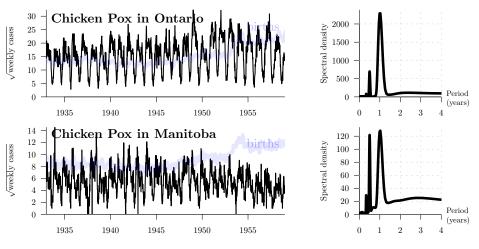
Linear perturbation theory applied to the attractors of the model explains other spectral peaks in data


► Whew!

Get More Ambitious!

- Aim to predict all spectral peaks in the data
- Asymptotic analysis —> spectral peaks from attractors
- Perturbation analysis —> spectral peaks from transients

Bauch & Earn (2003) Proc. R. Soc. Lond. **270**:1573–1578 Krylova & Earn (2013) J. R. Soc. Interface **18**(10):20130098 Hempel & Earn (2015) J. R. Soc. Interface **12**(106):20150024


Predicted vs Observed Spectral Peaks from Transients

Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573-1578

Great! Can we successfully predict even more detail?

Can we predict magnitudes of spectral peaks? *Example:*

Population of MB <
 More demographic stochasticity

Modelling recurrent epidemics: Summary so far

- Good understanding of recurrent epidemic patterns of many infectious diseases in the 20th century (*e.g.*, measles, chicken pox, whooping cough, rubella, ...)
- Perfect prediction of spectral peaks from attractors
- Excellent prediction of spectral peaks from transients
- Population size is key determinant of relative magnitude of peaks from attractors vs. transients (confirmed with stochastic simulations)

Modelling recurrent epidemics: Recent developments

- Extend time series further back in time
 - Does theory still allow us to predict epidemic transitions?
- ▶ Measles in New York City, 1891–1984

Success!

Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024

Key challenge that had to be overcome: changing patterns of seasonal variation in contact rates

> Papst & Earn (2019) J. R. Soc. Interface 16:20190202 Jagan et al. (2020) PLoS Comp. Biol. 16(9):e1008124

- Smallpox in London, 1664–1930
 - Many observed epidemiological transitions, correlated with policy changes and historical events

Krylova & Earn (2020) PLoS Biology 18(12):e3000506

Dynamical transition analysis in progress

Outline

Predicting patterns of epidemic recurrence

Puzzles presented by plagues of the past

 Forecasting the future: modelling and policy

The Difeases and Casualties this Week, fondon 41 From the 26 of september to the 3 of October Bur Pise (Frighted _____ A Linn WoodRress 16 12 St George Borolphiane 1 1 Albalions Barking 40 34 St Gregory by St Pauls 26 25 St Martin Ludgates St Martin Organs Iballows Breadfreet- I St Martin Outwitch Alhallows Great 42 41 St Tames Dukes place-27 Griping in the Gurs -----St Martin Vintrey-St James Garlickhithe-16 12 Laundies-----St John Bautift-II Tohn Evangelift ---Impolthame St Maudlin Oldfilm Altuliows Staining 21 18 St Michael Baffifhay 10 Infante Alhallows the Wall-33 St Katharine Coleman-20 16 Kingfevil----Stalplinge Se Katharine Crechurch -34 29 St Michael Crookedlane St Andrew Hubbard St Lawrence Jewry-Mcagrome-St Michael Queenhithe- 2 St Andrew Underfhaft-16 14 St Lawrence Pountney-14. 10 Bortive Plague -----Aged-Lemard Fofterlane-16 12 Puroles-St Michael Woodftreet St Mildred Breadfir Rickets St Mildred Poultrey -Apoplexie -Rifing of the Lights-St Margarer Newfilhftreet 1 S 1 3 Childbed-St Nicholas Coleabby-St Nicholas Olayes-Rupture-Renner Fynck-St Margares Pattons-4 Chrifomes-St Benner Gracechurch Scurvy -Cold-St Benner Paulfwhart- IS 7 Spotted Feaver----St Olave Jewry ----St Bennet Sherehog 2 St Botolph Billingigate - 8 Confumption-St Mary Aldermary -4 St Olave Silverfreet--Stilborn ---Convultion---St Mary le Bow ---Chrifts Church--44 39 St Mary Bothaw------Stone St Peter Cheap-Cough-St Chriftophers-4 St Clement Eaftcheap-1 St Dionis Backchurch-9 St Peter Cornhil St Mary Hill Droplic-St Peter Paulfwharf-Drownd at St. Martin in the St Mary Mounthaw-Suddenly ----St Peter Poor-St Mary Sommerfer-44 St Dunftan Eaft-28 24 Surfeit-St Steven Colemanftr St Edmund Lumbardftr. 13 St Mary Stayning ---Fields _____ St Ethelborough-----St Steven Walbrook_ Feaver Teeth-St Mary Woolchurch St Mary. Woolnorh-Fiftula Thru(h-St Thomas Apoffic-St Martin Iremongerlane 2 Flox and Small-pox-Tiffick Trinity Parifi-St Gabriel Fenchurch- 2 Vomiting-Flux-Found dead in the Fields at Winde-St.Mary Iflington Wormes S' Bligget Briderd Precine 23 23 S' Giles Cripplegate 126 151 Arabie Minories S' Borolph Alderfate 71 64 S' Olave Southwark - 378 St 1 (Males ---- 9212) (Malesthriftened in the 1.6 Periffers without the Walls-45 Buried, and at the Petthen/e-2258 Platue-Chriftned Females-Buried Females 3248 > Plague-5533 g Gile in the hald 25 178 Lambein Baugh 29 19 S Mary Hingson inclusy Partha 21 S Laouard Stored (c) 05 Mary With a stored (c) 10 g Janes Clerkenet 48 43 43 Wagdaha Baronalin 138 pcd Richeland half, a Kalu etar the Tower 5 3 9 S Mary Nenington 81 81 S Congreg Vitil (In all ---- 6460) In all---- 146 Decreafed in the Burials this Week-Parifhes clear of the Plague ---- 7 Parifhes Infe ded ----- 122 Christered in the 12 cast Parifless in Middlefer and Surry-40 Baried - 1613 Plague-The ABize of Bread les forsh by Order of the Lord Mator and Cours of Aldermen. A penny Wheaten Loaf to contain Nine Ounces and a half, and three S' Paul Covene Garden 235 124 St Mary Savoy _____ 19 16 Werren at the Perbouthalf-penny White Loaves the like weight " White Loaves

1665

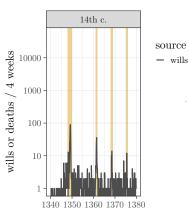
Michael Quern

Frighted Gowt Grief Griping in the Gurs 3 Jaundies-Impolthame Infants-Kingfevil Meagrome Plague. 5533 Purples Rickets

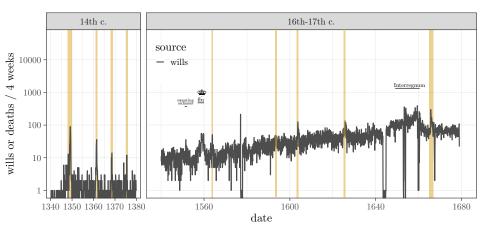
Sources of mortality data for London, England Wills Parish Registers

since 1258

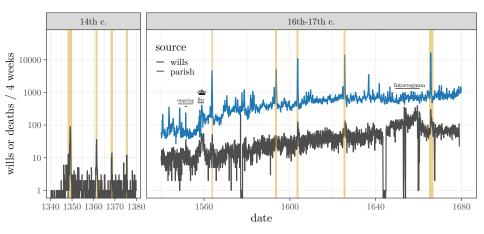
1 August der	Sec. March 199
Objected	
of sites diques post to be subani	appropriations in
6 down of youry and	Suger aliens of
2 The Smith of have somet Controp	- played holen of
Stander der Glende Barrier	_ place Colore 13
alous Daughter of alles they of an and	- spokene is
Som for of drawn Wieligen Callet	- plage below 13
Sumper of the one it is in filles	- pages cleans 13
and his harghter	- Maya ellero 13
Lilling Toine with	- too dias a
And Brind Daught of cher Garden wird	- Ages Greed 17
Siloning South Spon forst to some Engling -	- Alena china 12
anthan grig want	- Page chine of
Collery dough for to Sand Dauges and -	- plans below is
Salino Rollind with	- Ages dins a
2 Alice Gefforial with	- plages ellens 13
Som Hormon fort to Such Jelifen und	- Alune diens is
Spine rife of Nich Villay question	
9. Sevent rought of Sonry on the Darfin	
West for of Nest Swamings likes	-spolid below 13
	- yoger tiles B
Folicet rought of Soffing Granthan Sack	playable is
& frank Singlita of Gorge Right Look	played aliens 17 .
2 Hour Saughter of branch Sumond with	Hoges diere 13
Colong Daughter of John Soursifer report	- proper chine is
filled Sugar of Soury Comment way -	- Jower diene 13
L Busten Haught of som abouty sink	algo alino 13
Spling Daught of Bury Daufon with	- plane aline 13
(Spelling officer with	plans diane is
Loburned Leck upsuga	- Signadione is
Wind wife of Mathie Gill game	- Sur line a .
Lowed hit Daugelos	_ same line is the
Sector in She Mile and a	- store cline m
State info of John Wighnesds Handlaguesed - f Valent Huften Gats	- diger diens is
	- Sugar claus in
Estilian flash some	- plan dime 12
Allen Garrant	
Sola for of Wich Sound Bins very	- Spiger diens 13
Sugarforf May builty Johjor	Arthur ways 12
	CONTRACTOR OF THE OWNER

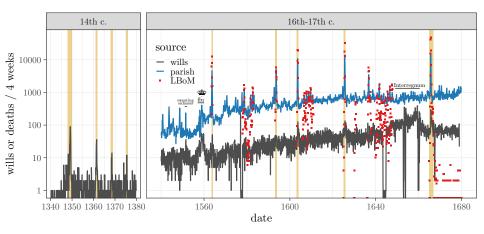

Bills of Mortality

1111 - 2007 -	The Dijeaj	es un	d Cafualties this Week Frighted	- manufact
	Section	103	Gost	
	The read	1	Grief Griping in the Gurs	
~ ~		1 25	Jaundies-	35
all all	の行為になる	22	Impolitime	2
and	010 4	1 0	Infante	-8
the last	C a	1 92	Kingfevil	- 9
I A A A STATE	S. C. Setting St.	- 10	Meagrome	
A Bortive	ALC: N. SHORE Y. A	50	Plague	
Aged-	•	I	Purples	-253
Apopiexie -	Brown Strap 14.30	3	Rickets	-10
Childbed-	Contraction of the	42	Rifing of the Lights-	-13
Chritomes-	2 . Contraction	11	Rupture-	-1
Cold	CHILL PROPERTY	1 0-	Spotted Feaver	-is
Confumption-		99	Stilborn-	- 65
Convalion-	THE HOLD STAT	03	Stone	10
Cough	Contraction of the local	22	Stopping of the ftomach-	3
Droplic-			Suddenly	
Drownd at St	Martin in the	1	Surfeit-	- 36
Fields	the month and the	68	Teeth	-112
Fearer-			Thrash	112
Fiftula	- 12 - L		Tiffick	4
Flox and Small-	por		Vomiting	12213
Flux	the Fields at		Winde	and a second
Found dead in	the Ficho at 1		Wormes	12
St.Mary Hingt	Constanting of the second		TT OTIME	Sec. 1995
ter 1 and attraction	Stranger 21 Co			- 1812
La Lana Contraction			(Males 32127	1.7 100
SMa SMa	- 08/	D	ed Females-3248 Plagu	(Agel
Chriftned rea	nies- 782	Durn	In all6460	C-5533
2 - Cina	led in the Burial			ALL A HSIN
Decrea	led in the buria	o mis	7 Parifhes Infected-18	37

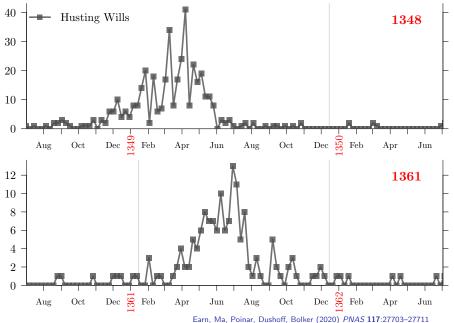

since 1538

since 1563 (continuous since 1661)

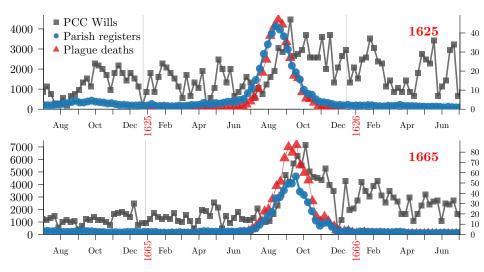

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711


Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711

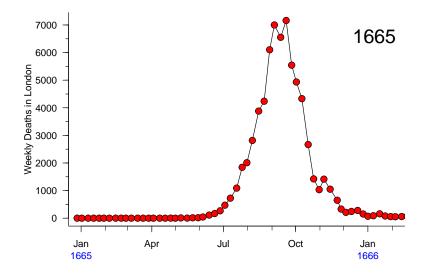


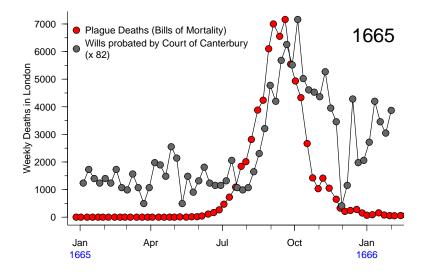
Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711



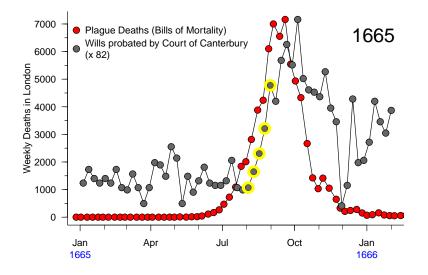
Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711

14th c. plague epidemics in London

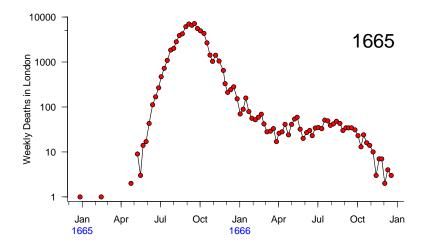

17th c. plague epidemics in London

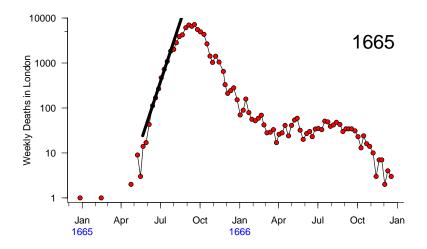

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711

Is it OK to compare results based on wills with results from mortality data?

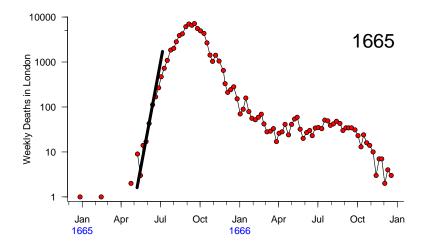

Plague in London

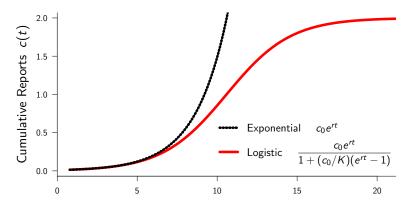
Plague in London


Plague in London


Compare growth rates of plague epidemics in London

- Property of the epidemic curve (the data alone)
- Estimate <u>without</u> assumptions about processes that generated the data (since we don't know the mode of transmission)
 - human-to-human (pneumonic plague)
 - rat-to-flea-to-human (bubonic plague)


Naïvely, we just fit a straight line to the log of the mortality time series.


Naïvely, we just fit a straight line to the log of the mortality time series.

Naïvely, we just fit a straight line to the log of the mortality time series.

Instead fit a saturating rather than a purely exponential curve.

- Both curves have same initial exponential growth rate r.
- Test extensively using simulated epidemics for which we know the correct answer.

Initial growth rates for plague in London, 1348–1665

• Later plagues grew $\frac{4 \times \text{ faster}}{4 \times \text{ faster}}$ than early plagues!

Doubling time:

- ▶ In 1348: ~ 45 days
- ► In 1665: ~ 11 days

Why did plague epidemics "accelerate"?

- Evolution of increased infectiousness? longer infectious period?
- Changes in population density? social structure? contact patterns?
- Changes in weather?
- Bubonic *vs.* pneumonic plague?

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711

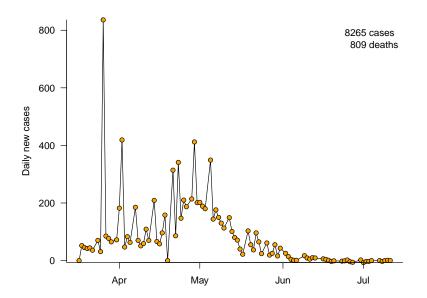
Bubonic or pneumonic plague?

Suppose pneumonic plague during second pandemic was exactly like modern pneumonic plague.

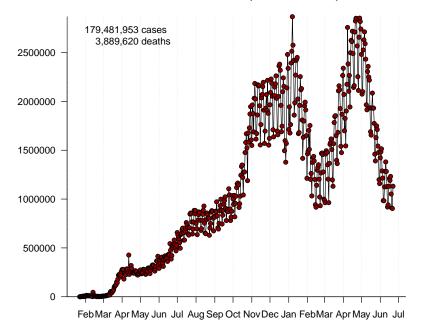
Pneumonic in 14th century London? $\implies \sim 20\% \text{ of population infected}$

 $\underline{\mathsf{BUT}}\sim 30{-}50\%$ of total population died in 1348

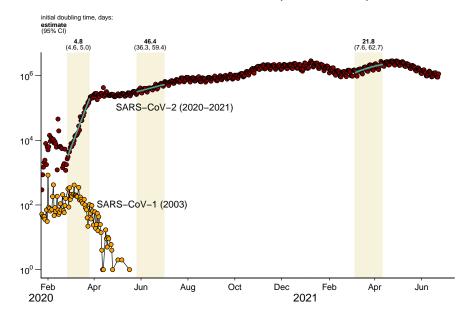
- \implies early plagues probably <u>not</u> (primarily) pneumonic
- A remarkable inference to be able to make based on counting wills! (and a little mathematical modelling)


Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711

Outline


- Predicting patterns of epidemic recurrence
- Puzzles presented by plagues of the past
- Forecasting the future: modelling and policy

SARS


Daily SARS-CoV-1 in 2003 (Worldwide)

Daily SARS-CoV-2 in 2020-2021 (Worldwide)

Daily SARS-CoV-2 vs SARS-CoV-1 (Worldwide)

SARS-CoV-2 in Ontario

COVID-19 cases in Ontario

initial doubling time, days: estimate (95% CI) **3.8** (3.4, 4.2) **10.6** (7.4, 15.1) **40.6** (38.5, 42.8) 12.9 (9.6, 17.2) 5000 -4000 -3000 -2000 -1000 -0 Mar May Jul Sep Nov Jan Mar May Jul 2020 2021

Modelling SARS-CoV-2 / COVID-19

Much richer data (compared with historical epidemics):

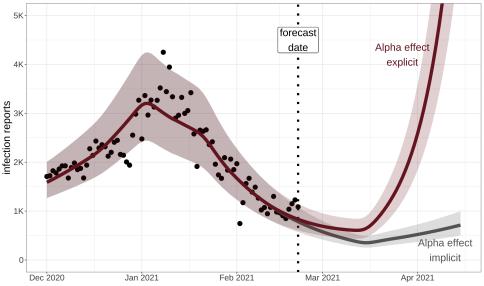
- Daily counts of positive tests, hospital occupancy, ICU occupancy, deaths, ...
- Daily vaccine doses administered
- Daily measures of weather, mobility
- Info on policy changes, travel restrictions, new virus variants,

Harder problem:

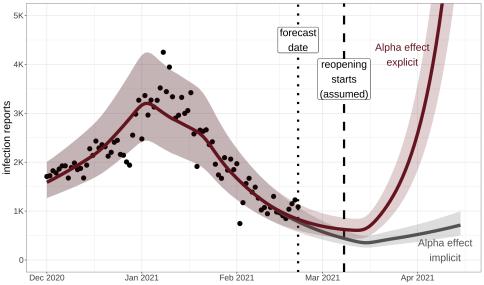
. . .

Forecast the future!

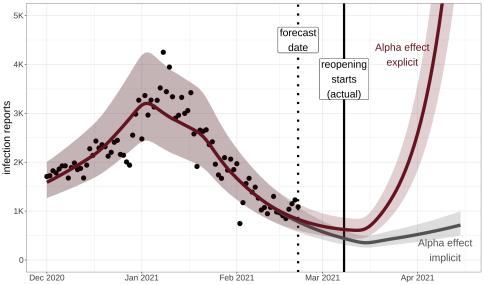
Modelling SARS-CoV-2 / COVID-19

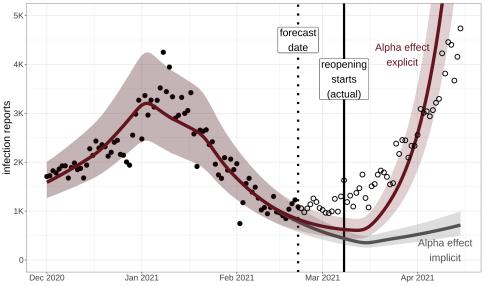

Approach:

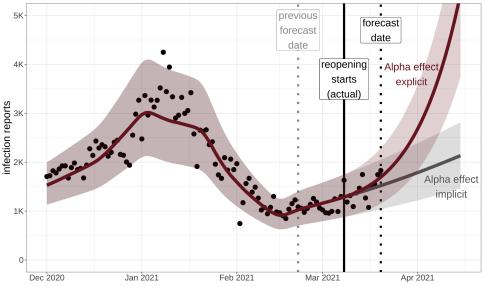
- Expand SEIR model to include compartments for cases, deaths, hospital occupancy, etc
- Simultaneously fit model to all the types of data we have
- Predict the future based on various scenarios

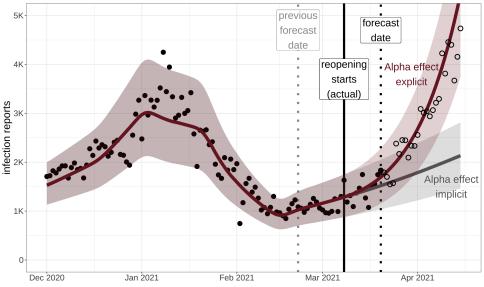

Interpret forecasts with caution:

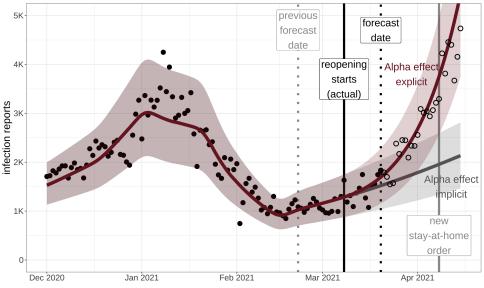
- Quantify uncertainties we understand (parameter estimates, observation and process noise)
- Be aware that models cannot capture all processes

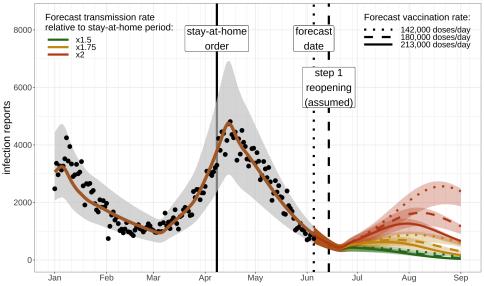

Forecast from 21 Feb 2021

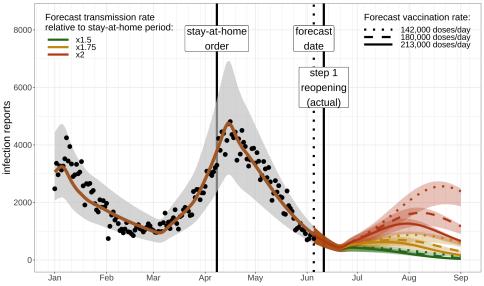

Forecast from 21 Feb 2021

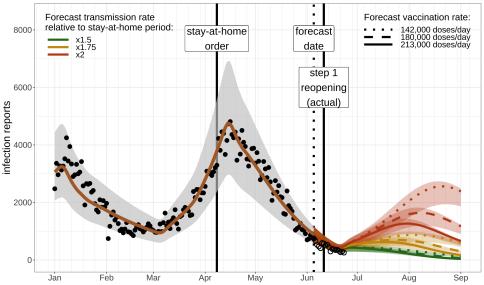

Forecast from 21 Feb 2021

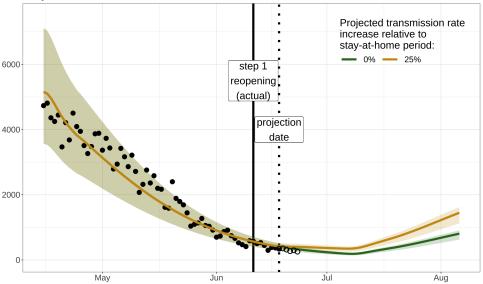

Forecast from 21 Feb 2021


Forecast from 20 Mar 2021


Forecast from 20 Mar 2021


Forecast from 20 Mar 2021


Forecast from 5 Jun 2021


Forecast from 5 Jun 2021

Forecast from 5 Jun 2021

Projections from 18 Jun 2021

Acknowledgements

- McMaster University: Ben Bolker, Jonathan Dushoff, Hendrik Poinar
- University of Victoria: Junling Ma
- University of Alberta: Karsten Hempel
- Public Health Agency of Canada: Michael Li, David Champredon
- University of Waterloo: Mikael Jagan
- Cornell University: Irena Papst
- Canadian Institute for Health Information (CIHI): Olga Krylova

Funders:

Thanks for your interest!

https://davidearn.mcmaster.ca https://mac-theobio.github.io/covid-19/

6 Mechanistic Modelling of Recurrent Epidemics II; \mathcal{R}_0

Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 6 Mechanistic Modelling of Recurrent Epidemics II Tuesday 8 October 2024

Draft Project Description Document is posted.

Draft Project Description Document is posted.

The project is to be submitted as a paper in the style of a research article for publication.

Draft Project Description Document is posted.

The project is to be submitted as a paper in the style of a research article for publication. It is <u>not</u> just a big assignment.

Draft Project Description Document is posted.

- The project is to be submitted as a paper in the style of a research article for publication. It is <u>not</u> just a big assignment.
- The project descriptions ask you questions and suggest directions for investigation, but you must construct the final document as a coherent single manuscript, not answers to a bunch of questions.

- Draft Project Description Document is posted.
 - The project is to be submitted as a paper in the style of a research article for publication. It is *not* just a big assignment.
 - The project descriptions ask you questions and suggest directions for investigation, but you must construct the final document as a coherent single manuscript, not answers to a bunch of questions.
- Midterm test:

Draft Project Description Document is posted.

- The project is to be submitted as a paper in the style of a research article for publication. It is *not* just a big assignment.
- The project descriptions ask you questions and suggest directions for investigation, but you must construct the final document as a coherent single manuscript, not answers to a bunch of questions.

Midterm test:

- Date: Tuesday 5 November 2024
- *Time:* 2:30pm 4:30pm
- Location: in class, HH-102

- Draft Project Description Document is posted.
 - The project is to be submitted as a paper in the style of a research article for publication. It is <u>not</u> just a big assignment.
 - The project descriptions ask you questions and suggest directions for investigation, but you must construct the final document as a coherent single manuscript, not answers to a bunch of questions.

Midterm test:

- Date: Tuesday 5 November 2024
- *Time:* 2:30pm 4:30pm
- Location: in class, HH-102

Assignment 4 is due the day of the midterm.

Draft Project Description Document is posted.

- The project is to be submitted as a paper in the style of a research article for publication. It is *not* just a big assignment.
- The project descriptions ask you questions and suggest directions for investigation, but you must construct the final document as a coherent single manuscript, not answers to a bunch of questions.

Midterm test:

- Date: Tuesday 5 November 2024
- *Time:* 2:30pm 4:30pm
- Location: in class, HH-102
- Assignment 4 is due the day of the midterm. Due Monday 4 November 2019 before class.

- Draft Project Description Document is posted.
 - The project is to be submitted as a paper in the style of a research article for publication. It is *not* just a big assignment.
 - The project descriptions ask you questions and suggest directions for investigation, but you must construct the final document as a coherent single manuscript, not answers to a bunch of questions.

Midterm test:

- Date: Tuesday 5 November 2024
- *Time:* 2:30pm 4:30pm
- Location: in class, HH-102
- Assignment 4 is due the day of the midterm. Due Monday 4 November 2019 before class.
 - Make sure you personally can do the question on calculating \mathcal{R}_0 on this assignment *before* the midterm test.

\mathcal{R}_0 : biological definition

The **basic reproduction number** \mathcal{R}_0 is:

the expected number of secondary cases produced, in a completely susceptible population, by a typical infective individual

e.g., Anderson and May (1991) "Infectious Diseases of Humans"

5/16

\mathcal{R}_0 : more mathematical definition

The **basic reproduction number** \mathcal{R}_0 is:

the number of new infections produced by a typical infective individual in a population at a disease free equilibrium (DFE)

van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29-48

6/16

\mathcal{R}_0 : most mathematical definition

The **basic reproduction number** \mathcal{R}_0 is:

the spectral radius of the next generation operator at a disease free equilibrium (DFE)

Diekmann, Heesterbeek & Metz (1990) J. Math. Biol. 28, 365-382

Definitions from matrix analysis

Definitions from matrix analysis

Definition (Spectrum of a matrix)

Let M be an $n \times n$ real (or complex) matrix. The *spectrum of* M is

$$\sigma(M) = \{\lambda : Mv = \lambda v \text{ for some non-zero } v \in \mathbb{C}^n\},\$$

i.e., $\sigma(M)$ is the set of eigenvalues of M.

Definitions from matrix analysis

Definition (Spectrum of a matrix)

Let M be an $n \times n$ real (or complex) matrix. The *spectrum of* M is

$$\sigma(M) = \left\{ \lambda : Mv = \lambda v \text{ for some non-zero } v \in \mathbb{C}^n \right\},\$$

i.e., $\sigma(M)$ is the set of eigenvalues of M.

Definition (Spectral radius of a matrix)

Let M be an $n \times n$ real (or complex) matrix. The *spectral radius* of M is

$$\rho(M) = \max\{|\lambda| : \lambda \in \sigma(M)\},\$$

i.e., $\rho(M)$ is the maximum modulus of the eigenvalues of M.

■ In very simple models, \mathcal{R}_0 is the product of the transmission rate and the mean time in the infectious class.

In very simple models, R₀ is the product of the transmission rate and the mean time in the infectious class. *e.g.*, In the SIR model with vital dynamics,

$$\mathcal{R}_{\mathsf{0}} = eta \cdot rac{1}{\gamma + \mu} \, .$$

In very simple models, R₀ is the product of the transmission rate and the mean time in the infectious class. *e.g.*, In the SIR model with vital dynamics,

$$\mathcal{R}_0 = \beta \cdot rac{1}{\gamma + \mu} \, .$$

When there are multiple infected classes, it is more complicated to compute R₀.

In very simple models, R₀ is the product of the transmission rate and the mean time in the infectious class. *e.g.*, In the SIR model with vital dynamics,

$$\mathcal{R}_0 = eta \cdot rac{1}{\gamma + \mu} \, .$$

- When there are multiple infected classes, it is more complicated to compute R₀.
- In the SEIR model, we found (based on a biological argument) that

$$\mathcal{R}_0 = \beta \cdot \frac{\sigma}{\sigma + \mu} \cdot \frac{1}{\gamma + \mu}$$

In very simple models, R₀ is the product of the transmission rate and the mean time in the infectious class. *e.g.*, In the SIR model with vital dynamics,

$$\mathcal{R}_0 = eta \cdot rac{1}{\gamma + \mu} \, .$$

- When there are multiple infected classes, it is more complicated to compute R₀.
- In the SEIR model, we found (based on a biological argument) that

$$\mathcal{R}_0 = \beta \cdot \frac{\sigma}{\sigma + \mu} \cdot \frac{1}{\gamma + \mu}$$

 Mathematically, the spectral radius of the next generation operator at the DFE is exactly this quantity.

In very simple models, R₀ is the product of the transmission rate and the mean time in the infectious class. *e.g.*, In the SIR model with vital dynamics,

$$\mathcal{R}_0 = eta \cdot rac{1}{\gamma + \mu} \, .$$

- When there are multiple infected classes, it is more complicated to compute R₀.
- In the SEIR model, we found (based on a biological argument) that

$$\mathcal{R}_0 = \beta \cdot \frac{\sigma}{\sigma + \mu} \cdot \frac{1}{\gamma + \mu}$$

Mathematically, the spectral radius of the next generation operator at the DFE is exactly this quantity. With this definition, it is also true that the disease persists if R₀ > 1 and goes extinct if R₀ < 1.</p>

$$\frac{dS}{dt} = \mu N - \frac{\beta SI}{N} - \mu S$$
$$\frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E - \mu E$$
$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$
$$\frac{dR}{dt} = \gamma I - \mu R$$

- Birth and death rate (μ)
- Transmission rate (β)
- Mean latent period $(1/\sigma)$
- Mean infectious period $(1/\gamma)$

Consider flows in and out of the infected compartments

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

• $\mathcal{F} =$ inflow of new infecteds to infected compartments $= \begin{pmatrix} \beta SI \\ 0 \end{pmatrix}$

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

$$\mathcal{F} = \begin{array}{c} \text{inflow of new infecteds} \\ \text{to infected compartments} \\ \text{inflow from infected compartments} \\ \text{minus inflow of } \underline{non-new} \text{ infecteds} \\ = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

$$\mathcal{F} = \begin{array}{c} \text{inflow of new infecteds} \\ \text{to infected compartments} \\ \mathcal{V} = \begin{array}{c} \text{outflow from infected compartments} \\ \text{minus inflow of } \underline{non-new} \text{ infecteds} \\ \end{array} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$

• Let
$$F =$$
 linearization of \mathcal{F} at DFE

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

$$\mathcal{F} = \begin{array}{c} \text{inflow of new infecteds} \\ \text{to infected compartments} \\ \mathcal{V} = \begin{array}{c} \text{outflow from infected compartments} \\ \text{minus inflow of } \underline{non-new} \text{ infecteds} \\ \end{array} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$

- Let F = linearization of F at DFE
- Let V = linearization of \mathcal{V} at DFE

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

$$\mathcal{F} = \begin{array}{c} \text{inflow of new infecteds} \\ \text{to infected compartments} \end{pmatrix} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix}$$

$$\mathcal{V} = \begin{array}{c} \text{outflow from infected compartments} \\ \text{minus inflow of non-new infecteds} \end{pmatrix} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$

- Let F = linearization of \mathcal{F} at DFE
- Let V = linearization of \mathcal{V} at DFE
- Then the *next generation matrix* is FV^{-1}

$$\frac{d}{dt} \begin{pmatrix} E \\ I \end{pmatrix} = \begin{pmatrix} \beta SI - \sigma E - \mu E \\ \sigma E - \gamma I - \mu I \end{pmatrix}$$

$$\mathcal{F} = \begin{array}{c} \text{inflow of new infecteds} \\ \text{to infected compartments} \end{pmatrix} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix}$$

$$\mathcal{V} = \begin{array}{c} \text{outflow from infected compartments} \\ \text{minus inflow of non-new infecteds} \end{pmatrix} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$

- Let F = linearization of F at DFE
- Let V = linearization of \mathcal{V} at DFE
- Then the *next generation matrix* is FV^{-1}
- Analogous to $\beta \gamma^{-1}$ in simple case.

Interpretation of FV^{-1} as next generation matrix

Almost verbatim from p. 33 of van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29-48

■ To interpret the entries of *FV*⁻¹ and develop a meaningful definition of *R*₀, consider the fate of an infected individual introduced into compartment *k* of a disease free population.

Interpretation of FV^{-1} as next generation matrix

- To interpret the entries of *FV*⁻¹ and develop a meaningful definition of *R*₀, consider the fate of an infected individual introduced into compartment *k* of a disease free population.
- The (j, k) entry of V⁻¹ is the average length of time this individual spends in compartment j during its lifetime, assuming that the population remains near the DFE and barring reinfection.

- To interpret the entries of *FV*⁻¹ and develop a meaningful definition of *R*₀, consider the fate of an infected individual introduced into compartment *k* of a disease free population.
- The (j, k) entry of V⁻¹ is the average length of time this individual spends in compartment j during its lifetime, assuming that the population remains near the DFE and barring reinfection.
- The (i, j) entry of F is the rate at which infected individuals in compartment j produce new infections in compartment i.

- To interpret the entries of *FV*⁻¹ and develop a meaningful definition of *R*₀, consider the fate of an infected individual introduced into compartment *k* of a disease free population.
- The (j, k) entry of V⁻¹ is the average length of time this individual spends in compartment j during its lifetime, assuming that the population remains near the DFE and barring reinfection.
- The (i, j) entry of F is the rate at which infected individuals in compartment j produce new infections in compartment i.
- Hence, the (i, k) entry of the product FV⁻¹ is the expected number of new infections in compartment i produced by the infected individual originally introduced into compartment k.

Almost verbatim from p. 33 of van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29-48

- To interpret the entries of *FV*⁻¹ and develop a meaningful definition of *R*₀, consider the fate of an infected individual introduced into compartment *k* of a disease free population.
- The (j, k) entry of V⁻¹ is the average length of time this individual spends in compartment j during its lifetime, assuming that the population remains near the DFE and barring reinfection.
- The (i, j) entry of F is the rate at which infected individuals in compartment j produce new infections in compartment i.
- Hence, the (i, k) entry of the product FV⁻¹ is the expected number of new infections in compartment i produced by the infected individual originally introduced into compartment k.
- Following Diekmann et al. (1990), we call FV^{-1} the next generation matrix for the model and set

$$\mathcal{R}_0 = \rho(\mathbf{F} V^{-1}),$$

where $\rho(A)$ denotes the spectral radius of a matrix A.

$$\mathcal{F} = \begin{pmatrix} \beta S I \\ 0 \end{pmatrix}$$

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$F = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$$

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$\mathcal{F} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$\mathcal{F} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$

$$V^{-1} = \begin{pmatrix} \frac{1}{\sigma + \mu} & 0\\ \frac{\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{1}{\gamma + \mu} \end{pmatrix}$$

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$\mathcal{F} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$
$$\mathcal{V}^{-1} = \begin{pmatrix} \frac{1}{\sigma + \mu} & 0 \\ \frac{\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{1}{\gamma + \mu} \end{pmatrix} \qquad \Longrightarrow$$

\mathcal{R}_0 via FV^{-1} for the SEIR model

V

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$\mathcal{F} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$
$$^{-1} = \begin{pmatrix} \frac{1}{\sigma + \mu} & 0 \\ \frac{\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{1}{\gamma + \mu} \end{pmatrix} \implies \qquad \mathcal{F} V^{-1} =$$

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$\mathcal{F} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$
$$\mathcal{V}^{-1} = \begin{pmatrix} \frac{1}{\sigma + \mu} & 0 \\ \frac{\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{1}{\gamma + \mu} \end{pmatrix} \implies \qquad \mathcal{F} \mathcal{V}^{-1} = \begin{pmatrix} \frac{\beta \sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{\beta}{\gamma + \mu} \\ 0 & 0 \end{pmatrix}$$

12/16

\mathcal{R}_0 via FV^{-1} for the SEIR model

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$F = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$
$$V^{-1} = \begin{pmatrix} \frac{1}{\sigma + \mu} & 0 \\ \frac{\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{1}{\gamma + \mu} \end{pmatrix} \implies \qquad \mathcal{F} V^{-1} = \begin{pmatrix} \frac{\beta \sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{\beta}{\gamma + \mu} \\ 0 & 0 \end{pmatrix}$$

$$\mathcal{R}_0 = \rho(FV^{-1}) = \beta\sigma/(\sigma+\mu)(\gamma+\mu)$$

\mathcal{R}_0 via FV^{-1} for the SEIR model

$$\mathcal{F} = \begin{pmatrix} \beta SI \\ 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} \sigma E + \mu E \\ -\sigma E + \gamma I + \mu I \end{pmatrix}$$
$$\mathcal{F} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \qquad \qquad \mathcal{V} = \begin{pmatrix} (\sigma + \mu) & 0 \\ -\sigma & (\gamma + \mu) \end{pmatrix}$$

$$V^{-1} = \begin{pmatrix} \frac{1}{\sigma + \mu} & 0\\ \frac{\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{1}{\gamma + \mu} \end{pmatrix} \implies FV^{-1} = \begin{pmatrix} \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)} & \frac{\beta}{\gamma + \mu}\\ 0 & 0 \end{pmatrix}$$
$$\mathcal{R}_0 = \rho(FV^{-1}) = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$$

Note wrt previous slide that the (2, 1) entry of V^{-1} is the average time an individual who enters the *E* compartment spends in the *I* compartment: only a proportion $\sigma/(\sigma + \mu)$ of such individuals make it to the *I* compartment, where the average time spent—by individuals who get there—is $1/(\gamma + \mu)$.

13/16

Computing \mathcal{R}_0 for other compartmental ODE models

The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - **1** The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - 1 The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.
 - 2 The biologically relevant part of the state space is forward-invariant.

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - 1 The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.
 - 2 The biologically relevant part of the state space is forward-invariant. In particular, if a compartment is empty, then there can be no transfer of individuals out of the compartment by death, infection, nor any other means.

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - 1 The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.
 - 2 The biologically relevant part of the state space is forward-invariant. In particular, if a compartment is empty, then there can be no transfer of individuals out of the compartment by death, infection, nor any other means.
 - 3 The DFE is stable in the absence of new infection

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - **1** The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.
 - 2 The biologically relevant part of the state space is forward-invariant. In particular, if a compartment is empty, then there can be no transfer of individuals out of the compartment by death, infection, nor any other means.
 - **3** The DFE is stable in the absence of new infection (if there is more than one DFE, \mathcal{R}_0 may depend on which one we focus on).

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - 1 The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.
 - 2 The biologically relevant part of the state space is forward-invariant. In particular, if a compartment is empty, then there can be no transfer of individuals out of the compartment by death, infection, nor any other means.
 - **3** The DFE is stable in the absence of new infection (if there is more than one DFE, \mathcal{R}_0 may depend on which one we focus on).
 - **4** The population size *N* is constant

- The method applied in the previous slides to obtain R₀ for the SEIR model works more generally for a very large class of "reasonable" infectious disease ODE models. "Reasonable" means:
 - **1** The vector field can be written $\mathcal{F} \mathcal{V}$, where $\mathcal{F} \ge 0$ corresponds to <u>new infections</u> and \mathcal{V} can be written $\mathcal{V} = \mathcal{V}^+ \mathcal{V}^-$, where $\mathcal{V}^+ \ge 0$ corresponds to <u>outflow</u> and $\mathcal{V}^- \ge 0$ corresponds to <u>inflow of infectives that are not new</u>.
 - 2 The biologically relevant part of the state space is forward-invariant. In particular, if a compartment is empty, then there can be no transfer of individuals out of the compartment by death, infection, nor any other means.
 - **3** The DFE is stable in the absence of new infection (if there is more than one DFE, \mathcal{R}_0 may depend on which one we focus on).
 - 4 The population size *N* is constant (or the model is expressed in terms of proportions in each compartment).

Theorem (van den Driessche and Watmough (2002))

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model satisfies the conditions specified on the previous slide, then

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model satisfies the conditions specified on the previous slide, then

1 \mathcal{R}_0 can be computed as $\rho(FV^{-1})$;

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model satisfies the conditions specified on the previous slide, then

- **1** \mathcal{R}_0 can be computed as $\rho(FV^{-1})$;
- **2** if $\mathcal{R}_0 < 1$ then the disease-free equilibrium (DFE) is locally asymptotically stable (LAS), whereas if $\mathcal{R}_0 > 1$ then there is a LAS endemic equilibrium (EE).

The biological method of deriving R₀ is generally more informative in terms of what is going on.

The biological method of deriving R₀ is generally more informative in terms of what is going on. But it can be challenging to apply to complex models.

- The biological method of deriving R₀ is generally more informative in terms of what is going on. But it can be challenging to apply to complex models.
- The formal approach, *i.e.*, $\mathcal{R}_0 = \rho(FV^{-1})$, works in almost any situation you will encounter

- The biological method of deriving R₀ is generally more informative in terms of what is going on. But it can be challenging to apply to complex models.
- The formal approach, *i.e.*, R₀ = ρ(FV⁻¹), works in almost any situation you will encounter, even very complicated models with many compartments.

- The biological method of deriving R₀ is generally more informative in terms of what is going on. But it can be challenging to apply to complex models.
- The formal approach, *i.e.*, R₀ = ρ(FV⁻¹), works in almost any situation you will encounter, even very complicated models with many compartments.
- If possible, it is best to use both methods to find an expression for \mathcal{R}_0 , and make sure they agree.

- The biological method of deriving R₀ is generally more informative in terms of what is going on. But it can be challenging to apply to complex models.
- The formal approach, *i.e.*, R₀ = ρ(FV⁻¹), works in almost any situation you will encounter, even very complicated models with many compartments.
- If possible, it is best to use both methods to find an expression for \mathcal{R}_0 , and make sure they agree.
- A completely different challenge is to estimate \mathcal{R}_0 for a real epidemic from data...

• If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - Mean latent period $1/\sigma$

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - \blacksquare Mean infectious period $1/\gamma$

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - \blacksquare Mean infectious period $1/\gamma$
 - Birth rate μ

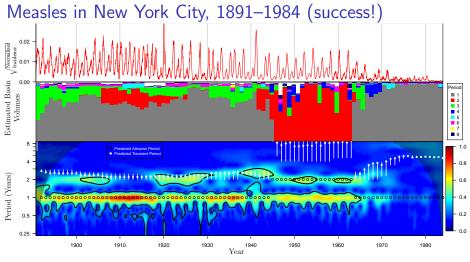
- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - \blacksquare Mean infectious period $1/\gamma$
 - Birth rate μ
 - Estimate β via

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - \blacksquare Mean infectious period $1/\gamma$
 - Birth rate μ
 - Estimate β via initial growth rate r

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - \blacksquare Mean infectious period $1/\gamma$
 - Birth rate μ
 - Estimate β via initial growth rate r:

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - \blacksquare Mean infectious period $1/\gamma$
 - Birth rate µ
 - Estimate β via initial growth rate r:
 - **•** For the simplest SIR model, $r = \beta \gamma$ so $\beta = r + \gamma$.

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - Mean infectious period $1/\gamma$
 - Birth rate μ
 - Estimate β via initial growth rate r:
 - For the simplest SIR model, $r = \beta \gamma$ so $\beta = r + \gamma$.
 - More generally, r is the largest positive (or least negative) real part of the eigenvalues of F V.

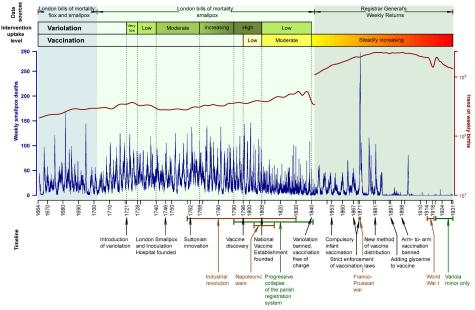

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - Mean infectious period $1/\gamma$
 - Birth rate μ
 - Estimate β via initial growth rate r:
 - For the simplest SIR model, $r = \beta \gamma$ so $\beta = r + \gamma$.
 - More generally, r is the largest positive (or least negative) real part of the eigenvalues of F V.
 - For SEIR model we find:

$$r = rac{1}{2} \left(\sqrt{4 eta \sigma + (\gamma - \sigma)^2} - \left(\gamma + \sigma + 2 \mu
ight)
ight)$$

- If the SEIR model captures the natural history of some disease well, how can you <u>estimate</u> $\mathcal{R}_0 = \frac{\beta\sigma}{(\sigma + \mu)(\gamma + \mu)}$?
 - \blacksquare Mean latent period $1/\sigma$
 - Mean infectious period $1/\gamma$
 - Birth rate μ
 - Estimate β via initial growth rate r:
 - For the simplest SIR model, $r = \beta \gamma$ so $\beta = r + \gamma$.
 - More generally, r is the largest positive (or least negative) real part of the eigenvalues of F V.
 - For SEIR model we find:

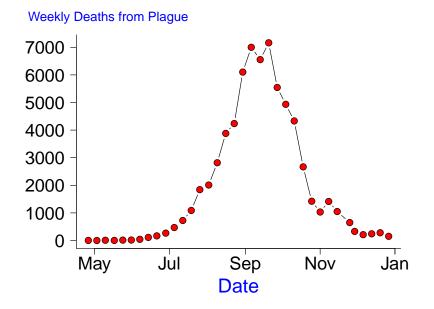
$$r = rac{1}{2} \left(\sqrt{4 eta \sigma + (\gamma - \sigma)^2} - \left(\gamma + \sigma + 2 \mu
ight)
ight)$$

Solving this for β we obtain: $\beta = \frac{(r + \sigma + \mu)(r + \gamma + \mu)}{\sigma}$

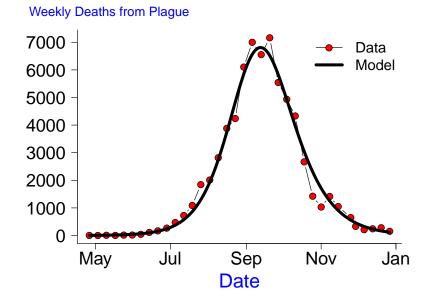


Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024

Key challenge that had to be overcome: changing patterns of seasonal variation in contact rates


> Papst & Earn (2019) J. R. Soc. Interface 16:20190202 Jagan et al. (2020) PLoS Comp. Biol. 16(9):e1008124

Smallpox in London, 1664–1930 (in progress)



Krylova & Earn (2020) PLoS Biology 18(12):e3000506

The Great Plague of London, 1665

SEIR Model Fit to the Great Plague of London

