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20th century measles dynamics in England and Wales
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» Annual epidemics, then biennial, then irregular
> Why is the pattern of epidemic recurrence so complicated?

» What causes changes in frequency content over time?
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What causes changes in frequency content over time?
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What causes changes in frequency content over time?



SEIR model

Birth Y v

Y

Vaccination

Recovery

Becoming
infectious

s =v(1—p)—BSI —uS » Birth rate (v for natality)

dt » Death rate (u for mortality)

dE > P . .

9% 8S] — oE — uE roportion vaccinated (p)

g PS5l —ok—u

Jl » Transmission rate (53)

i cE —~I —pul » Mean latent period (Tt = 1/0)
JR » Mean infectious period
I:yp—|—f~>/l—lu,,’-_\’ (Tmf:l/FY)



SEIR with vital dynamics and vaccination: Analysis

» Two Equilibria
» Disease Free Equilibrium (DFE)
» Endemic Equilibrium (EE)

» Periodic solutions ? Chaos? No.

» Basic reproduction number Ry: expected infections from one
infected entering a wholly susceptible population
> Biological derivation: (assuming v = p and p = 0)
Ro =B x 55, % ﬁ ~ Byt ','%>>max(%,%)
» Mathematical derivation:
Ro =1 is stability boundary

van den Driessche & Watmough 2002
Mathematical Biosciences 180:29-48

» EE is globally asymptotically stable (GAS) if Rg > 1;
DFE is GAS otherwise.

» Approach to EE is typically via damped oscillations.

P> But observed recurrent epidemics are undamped.



What are we missing?



Populations are finite: demographic stochasticity

» Differential equations describe the expected behaviour in limit
that population size N — oo

» Re-cast the SEIR model as a stochastic process
(continuous time Markov jump process)

» Simulate with standard Gillespie algorithm
Gillespie 1976, J. Comp. Phys. 22, 403-434


https://en.wikipedia.org/wiki/Continuous-time_Markov_chain
https://en.wikipedia.org/wiki/Gillespie_algorithm

Gillespie Simulations: SEIR Results for Measles Parameters

Ro = 17, Tiay = 8 days, Tins = 5 days, v = u = 0.02/year, N = 5,000,000

Incidence
1500 2500 3500

500

Earn (2009) IAS/Park City Mathematics Series 14:151-186

» Demographic Stochasticity sustains transient behaviour
(oscillations do not damp out) (Bartlett 1950°s)

» Explains undamped oscillations at a single period

» But, unable to explain changes in interepidemic period, or
irregularity, as observed


https://davidearn.mcmaster.ca/publications/Earn2009

What are we STILL missing?



Contact rates are higher during school terms!

-
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Sinusoidal SEIR Model

» Transmission rate [ is not constant:
high during school terms, low in summer

London WP, Yorke JA, 1973, Am. J. Epidemiol. 98, 453-468

» For simplicity, model as a sine wave:

B(t) = (B) (1 + acos2rt)

» () = mean transmission rate
» o = amplitude of seasonal variation in contact rate

B(t)




Is this change significant?

» We now have a forced nonlinear system

» Forcing frequency can resonate with the natural timescales of
the disease (e.g., period of damped oscillations)

» Very rich dynamical system. ..
(analogy: forced pendulum)
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Sinusoidal SEIR Model: Does it explain measles dynamics?

SEIR model with sinusoidal forcing:
» Produces recurrent undamped epidemics of all frequencies
observed in measles time series.

Schwartz 1B, Smith HL, 1983, J. Math. Biol. 18, 233-253

» Produces chaos, which can explain irregular behaviour and
transitions from one type of cycle to another
Olsen LF, Schaffer WM, 1990, Science 249, 499-504

» |f correct, this implies these transitions are unpredictable.

> BUT... the model also predicts rapid extinction of the virus
(not persistence).
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What are we STILL missing?



Contact rates are higher during school terms!

So
. S



Sinusoidal forcing vs Term-time forcing
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» Term-time SEIR model predicts a strictly biennial cycle of
measles epidemics, at all times and places.

P Is superb agreement with post-war measles dynamics
coincidental???



What ELSE might we be missing?



Key Insight

» Suppose Ry is estimated when the birth rate is v.

» If the birth rate changes, v — ¢/, then the dynamical effect is
identical to changing Ry instead:

!
Ro — Ro —
1%

» More generally, any change in susceptible recruitment rate is
equivalent dynamically to a change in Rp.

» A change in birth rate v — v/ together with a change in
vaccine uptake p — p’ is dynamically equivalent to

V'(1—p')
v(1—p)

Earn et al. (2000) Science 287:667-670
Earn (2009) IAS/Park City Mathematics Series 14:151-186

Ro — Ro


https://davidearn.mcmaster.ca/publications/EarnEtAl2000
https://davidearn.mcmaster.ca/publications/Earn2009

Predicting Epidemic Transitions

» Changes in

> Birth rate (v)
» Vaccination proportion (p)
> Transmission rate ({3) or Rg)

all map onto the same parameter axis.

» . Summarize possible dynamical changes induced by
demographic/behavioural changes with a one-parameter (Rg)
bifurcation diagram.

» . Predict epidemic transitions by mapping observed changes
in v, p or Rg onto this diagram.



Measles Bifurcation Diagram (wrt Ry)
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Earn et al. (2000) Science 287:667—670


https://davidearn.mcmaster.ca/publications/EarnEtAl2000
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Measles in London, England

weekly cases
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Measles in London, England
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Measles in Liverpool, England
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Measles in New York City
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Measles in Baltimore
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What about other notifiable childhood infectious diseases?

» Does same analysis explain patterns of recurrent epidemics for
rubella? chicken pox? whooping cough?

A
/

P

» Only attractor of term-time SEIR model for rubella, chicken
pox, or whooping cough is annual cycle.

P Yet these diseases show much more complex dynamics!
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1939 weekly infectious disease notifications in Ontario
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Incidence time series of these diseases show strong spectral peaks
at periods not predicted by asymptotic analysis

(i.e., not displayed by attractors of term-time SEIR model)

Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573-1578


https://davidearn.mcmaster.ca/publications/BauchEarn2003a

Argh!



What are we STILL missing?



Demographic Stochasticity Comes to the Rescue (Again!)

» Sustains transient behaviour

» Linear perturbation theory applied to the attractors of the
model explains other spectral peaks in data

> Whew!

Get More Ambitious!
> Aim to predict all spectral peaks in the data

> Asymptotic analysis — spectral peaks from attractors

» Perturbation analysis — spectral peaks from transients

Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573-1578
Krylova & Earn (2013) J. R. Soc. Interface 18(10):20130098
Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024


https://davidearn.mcmaster.ca/publications/BauchEarn2003a
https://davidearn.mcmaster.ca/publications/KrylovaEarn2013
https://davidearn.mcmaster.ca/publications/HempelEarn2015

Predicted vs Observed Spectral Peaks from Transients
O Measles A Chicken Pox X Whoooping Cough B Rubella
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Bauch & Earn (2003) Proc. R. Soc. Lond. 270:1573-1578

» Great! Can we successfully predict even more detail?


https://davidearn.mcmaster.ca/publications/BauchEarn2003a

Can we predict magnitudes of spectral peaks?

Example:
30 9 Chicken Pox in Ontarjo 2000 —
g 25 £
i 20 _g 1500 —
e 15 £ 1000
£ 10 2
5 & 500
| Period
0 T T T T T 0 (years)
1935 1940 1945 1950 1955 0 1 2 3 4
3 Chicken Pox in Manitoba 120
2 1 *5 100
co8 2 80
% 6 T 60
: g 40
2 a90
_ Period
0 T T T T T 0 (years)
1935 1940 1945 1950 1955 0o 1 2 3 4

» Population of MB < ON
= more demographic stochasticity



Modelling recurrent epidemics: Summary so far

» Good understanding of recurrent epidemic patterns of many
infectious diseases in the 20th century
(e.g., measles, chicken pox, whooping cough, rubella, ...)

» Perfect prediction of spectral peaks from attractors
» Excellent prediction of spectral peaks from transients

» Population size is key determinant of relative magnitude of
peaks from attractors vs. transients
(confirmed with stochastic simulations)



Modelling recurrent epidemics: Recent developments

> Extend time series further back in time
» Does theory still allow us to predict epidemic transitions?

» Measles in New York City, 1891-1984
» Success!

Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024

» Key challenge that had to be overcome:
changing patterns of seasonal variation in contact rates

Papst & Earn (2019) J. R. Soc. Interface 16:20190202
Jagan et al. (2020) PLoS Comp. Biol. 16(9):e1008124

» Smallpox in London, 1664-1930

» Many observed epidemiological transitions, correlated with
policy changes and historical events

Krylova & Earn (2020) PLoS Biology 18(12):€3000506

» Dynamical transition analysis in progress


https://davidearn.mcmaster.ca/publications/HempelEarn2015
https://davidearn.mcmaster.ca/publications/PapstEarn2019
https://davidearn.mcmaster.ca/publications/JaganEtAl2020
https://davidearn.mcmaster.ca/publications/KrylovaEarn2020
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Sources of mortality data for London, England
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14th c. plague epidemics in London
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17th c. plague epidemics in London
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s it OK to compare
results based on wills
with results from
mortality data?
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Compare growth rates of plague epidemics in London

» Property of the epidemic curve (the data alone)

P> Estimate without assumptions about processes that generated
the data (since we don’t know the mode of transmission)

» human-to-human (pneumonic plague)

» rat-to-flea-to-human (bubonic plague)



Estimating the initial growth rate of an epidemic
> Naively, we just fit a straight line to the log of the mortality

time series.
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Estimating the initial growth rate of an epidemic
> Naively, we just fit a straight line to the log of the mortality

time series.
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Estimating the initial growth rate of an epidemic

Instead fit a saturating rather than a purely exponential curve.
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» Both curves have same initial exponential growth rate r.

» Test extensively using simulated epidemics for which we know
the correct answer.

Ma, Dushoff, Bolker, Earn (2014) Bull. Math. Biol. 76:245-260


https://davidearn.mcmaster.ca/publications/MaEtAl2014

Initial growth rates for plague in London, 1348-1665

» Later plagues grew 4x faster than early plagues!

Doubling time:

> |n 1348: ~ 45 days
> |n 1665: ~ 11 days

» Why did plague epidemics “accelerate”?
» Evolution of increased infectiousness? longer infectious period?

» Changes in population density? social structure? contact
patterns?

» Changes in weather?
» Bubonic vs. pneumonic plague?

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711


https://davidearn.mcmaster.ca/publications/EarnEtAl2020

Bubonic or pneumonic plague?

Suppose pneumonic plague during second pandemic was exactly
like modern pneumonic plague.

» Pneumonic in 14th century London?
—> ~ 20% of population infected

BUT ~ 30-50% of total population died in 1348

— early plagues probably not (primarily) pneumonic

» A remarkable inference to be able to make based on counting
wills! (and a little mathematical modelling)

Earn, Ma, Poinar, Dushoff, Bolker (2020) PNAS 117:27703-27711


https://davidearn.mcmaster.ca/publications/EarnEtAl2020

QOutline

» Predicting patterns
of epidemic recurrence

» Puzzles presented by
plagues of the past

» Forecasting the future:
modelling and policy
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Daily SARS-CoV-1 in 2003 (Worldwide)
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Daily SARS-CoV-2 in 2020-2021 (Worldwide)
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new cases

Daily
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SARS-CoV-2 vs SARS-CoV-1 (Worldwide)

initial doubling time, days:
estimate
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SARS-CoV-2

in Ontario
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Modelling SARS-CoV-2 / COVID-19

Much richer data (compared with historical epidemics):

» Daily counts of positive tests, hospital occupancy, ICU
occupancy, deaths, ...

» Daily vaccine doses administered
» Daily measures of weather, mobility

» Info on policy changes, travel restrictions, new virus variants,

Harder problem:

» Forecast the future!



Modelling SARS-CoV-2 / COVID-19

Approach:

» Expand SEIR model to include compartments for cases,
deaths, hospital occupancy, etc

» Simultaneously fit model to all the types of data we have
» Predict the future based on various scenarios

Interpret forecasts with caution:

» Quantify uncertainties we understand
(parameter estimates, observation and process noise)

» Be aware that models cannot capture all processes



Fitting and forecasting COVID-19 in Ontario
Forecast from 21 Feb 2021
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Fitting and forecasting COVID-19 in Ontario

Forecast from 5 Jun 2021
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Fitting and forecasting COVID-19 in Ontario
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Fitting and forecasting COVID-19 in Ontario

Forecast from 5 Jun 2021
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Fitting and forecasting COVID-19 in Ontario
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m Draft Project Description Document is posted.
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research article for publication. It is not just a big assignment.
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directions for investigation, but you must construct the final
document as a coherent single manuscript, not answers to a
bunch of questions.

m Midterm test:

m Date: Tuesday 5 November 2024
m Time: 2:30pm — 4:30pm
m Location: in class, HH-102

m Assignment 4 is due the day of the midterm.
Due Monday 4 November 2019 before class.
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Announcements

m Draft Project Description Document is posted.

m The project is to be submitted as a paper in the style of a
research article for publication. It is not just a big assignment.

m The project descriptions ask you questions and suggest
directions for investigation, but you must construct the final
document as a coherent single manuscript, not answers to a
bunch of questions.

m Midterm test:

m Date: Tuesday 5 November 2024
m Time: 2:30pm — 4:30pm
m Location: in class, HH-102

m Assignment 4 is due the day of the midterm.
Due Monday 4 November 2019 before class.

m Make sure you personally can do the question on calculating
Ro on this assignment before the midterm test.

Instructor: David Earn
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Ro: biological definition

The basic reproduction number Ry is:
the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective
individual

e.g., Anderson and May (1991) “Infectious Diseases of Humans"

Instructor: David Earn



Ro: more mathematical definition

The basic reproduction number Ry is:
the number of new infections produced by a typical infec-
tive individual in a population at a disease free equilibrium
(DFE)

van den Driessche and Watmough (2002) Mathematical Biosciences 180, 29-48

Instructor: David Earn



Ro: most mathematical definition

The basic reproduction number Ry is:
the spectral radius of the next generation operator at a
disease free equilibrium (DFE)

Diekmann, Heesterbeek & Metz (1990) J. Math. Biol. 28, 365-382

Instructor: David Earn
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Definitions from matrix analysis

Definition (Spectrum of a matrix)

Let M be an n x n real (or complex) matrix. The spectrum of M
is
o(M) = {\: Mv = Av for some non-zero v € C"},

i.e., (M) is the set of eigenvalues of M.

Instructor: David Earn



Definitions from matrix analysis

Definition (Spectrum of a matrix)

Let M be an n x n real (or complex) matrix. The spectrum of M
is
o(M) = {\: Mv = Av for some non-zero v € C"},

i.e., (M) is the set of eigenvalues of M.

Definition (Spectral radius of a matrix)

Let M be an n x n real (or complex) matrix. The spectral radius
of M is
p(M) = max{|A| : A € o(M)},

i.e., p(M) is the maximum modulus of the eigenvalues of M.

Instructor: David Earn
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Computing Rg

m In very simple models, Ry is the product of the transmission rate
and the mean time in the infectious class.

Instructor: David Earn
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compute Ry.
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m Mathematically, the spectral radius of the next generation operator
at the DFE is exactly this quantity.
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Computing Rg

m In very simple models, Ry is the product of the transmission rate
and the mean time in the infectious class. e.g., In the SIR model
with vital dynamics,

Ro=f-——.
° )

m When there are multiple infected classes, it is more complicated to
compute Ry.

m In the SEIR model, we found (based on a biological argument) that

o 1

Ro=p

ot ytp

m Mathematically, the spectral radius of the next generation operator
at the DFE is exactly this quantity. With this definition, it is also
true that the disease persists if Ro > 1 and goes extinct if Ry < 1.

Instructor: David Earn



SEIR model (with vital dynamics)

ds BSI
iy VR et
dt N >
m Birth and death rate (u)
dE  pBSI
gt N oE —pE m Transmission rate ()
dl m Mean latent period (1/0)
i cE —~l—pul
t m Mean infectious period (1/7)
dR
X - uR
dt Y= p

Instructor: David Earn



Next generation matrix for the SEIR model

Instructor: David Earn



Next generation matrix for the SEIR model

m Consider flows in and out of the infected compartments
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Next generation matrix for the SEIR model

m) =

Consider flows in and out of the infected compartments, and
highlight flows that correspond to new infections:

d [E B 6SI—oE — uE
dt \1) \ cE—~l—ul
F_ inflow of new infecteds _ <55/>

to infected compartments 0

outflow from infected compartments cE 4+ uE
 \—cE+~l+ul

minus inflow of non-new infecteds

Let F = linearization of F at DFE
Let V = linearization of V at DFE
Then the next generation matrix is FV ™1

Analogous to 7~ in simple case.

Instructor: David Earn
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Interpretation of V! as next generation matrix

Almost verbatim from p.33 of van den Driessche and Watmough (2002) Mathematical Biosciences 180, 20-48

m To interpret the entries of FV ! and develop a meaningful
definition of Rg, consider the fate of an infected individual
introduced into compartment k of a disease free population.

m The (j, k) entry of V~1 is the average length of time this individual
spends in compartment j during its lifetime, assuming that the
population remains near the DFE and barring reinfection.

m The (i,)) entry of F is the rate at which infected individuals in
compartment j produce new infections in compartment i.

m Hence, the (i, k) entry of the product F V=1 is the expected number
of new infections in compartment /i produced by the infected
individual originally introduced into compartment k.

m Following Diekmann et al. (1990), we call FV~1! the next
generation matrix for the model and set

RO = p(Fvil) )

where p(A) denotes the spectral radius of a matrix A.
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R, via FV~! for the SEIR model

_(BSI _ ok + uE
]:<O V= —0E + 1+ pl
0 p (c4+np) 0
F pr— V pr—
(0 0> ( -0 (v+n)
1 0 Bo B
vl= ( ot 1 ) — Fyl= ((a+u)(v+u) v+u>

(o+m)(+u)  vra 0 0

Ro=p(FV™Y) = Bo/(o + p) (v + 1)

m Note wrt previous slide that the (2,1) entry of V1 is the average
time an individual who enters the E compartment spends in the /
compartment: only a proportion ¢ /(o + 1) of such individuals make
it to the / compartment, where the average time spent—by
individuals who get there—is 1/(v + ).
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m The method applied in the previous slides to obtain Rq for the SEIR
model works more generally for a very large class of “reasonable”
infectious disease ODE models. “Reasonable” means:

The vector field can be written F — V), where F > 0 corresponds to
new infections and V can be written ¥V = V' — V™, where V* >0
corresponds to outflow and V™ > 0 corresponds to
inflow of infectives that are not new.

The biologically relevant part of the state space is forward-invariant.
In particular, if a compartment is empty, then there can be no
transfer of individuals out of the compartment by death, infection,
nor any other means.

The DFE is stable in the absence of new infection (if there is more
than one DFE, Ro may depend on which one we focus on).

A The population size N is constant (or the model is expressed in
terms of proportions in each compartment).

Instructor: David Earn



Computing Ry for other compartmental ODE models

Instructor: David Earn



Computing Ry for other compartmental ODE models

Theorem (van den Driessche and Watmough (2002))

Instructor: David Earn



Computing Ry for other compartmental ODE models

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model
satisfies the conditions specified on the previous slide, then

Instructor: David Earn



Computing Ry for other compartmental ODE models

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model
satisfies the conditions specified on the previous slide, then

Ro can be computed as p(FV 1),

Instructor: David Earn



Computing Ry for other compartmental ODE models

Theorem (van den Driessche and Watmough (2002))

If the vector field associated with an ODE infectious disease model
satisfies the conditions specified on the previous slide, then

Ro can be computed as p(FV 1),

if Ro < 1 then the disease-free equilibrium (DFE) is locally
asymptotically stable (LAS), whereas if Rg > 1 then there is a
LAS endemic equilibrium (EE).

Instructor: David Earn
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R calculation: summary

m The biological method of deriving R is generally more
informative in terms of what is going on. But it can be
challenging to apply to complex models.

m The formal approach, i.e., Rg = p(FV~1), works in almost
any situation you will encounter, even very complicated
models with many compartments.

m If possible, it is best to use both methods to find an
expression for Rg, and make sure they agree.

m A completely different challenge is to estimate Rq for a real
epidemic from data. ..

Instructor: David Earn
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Estimating R based on the SEIR model

m If the SEIR model captures the natural history of some disease
Lo

well, how can you estimate Ro=-——~———~
(o 4+ p)(v+n)

Mean latent period 1/0

Mean infectious period 1/~

=
=

m Birth rate p

m Estimate [ via initial growth rate r:

m For the simplest SIR model, r=3—~v so B=r+1.

m More generally, r is the largest positive (or least negative) real
part of the eigenvalues of F — V.

m For SEIR model we find:

= (VAT oF - (r+o +20))

(rto+u)(r+v+p)

Instructor: David Earn

m Solving this for 5 we obtain: [ =






Measles in New York City, 1891-1984 (success!)
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Hempel & Earn (2015) J. R. Soc. Interface 12(106):20150024
» Key challenge that had to be overcome:
changing patterns of seasonal variation in contact rates

Papst & Earn (2019) J. R. Soc. Interface 16:20190202
Jagan et al. (2020) PLoS Comp. Biol. 16(9):e1008124


https://davidearn.mcmaster.ca/publications/HempelEarn2015
https://davidearn.mcmaster.ca/publications/PapstEarn2019
https://davidearn.mcmaster.ca/publications/JaganEtAl2020

Smallpox in London, 1664-1930 (in progress)
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Krylova & Earn (2020) PLoS Biology 18(12):€3000506
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https://davidearn.mcmaster.ca/publications/KrylovaEarn2020

The Great Plague of London, 1665

Weekly Deaths from Plague
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SEIR Model Fit to the Great Plague of London

Weekly Deaths from Plague
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