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What causes changes in frequency content over time?
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What causes changes in frequency content over time?
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What causes changes in frequency content over time?

Measles in New York City

Krylova & Earn 2013, J. R. Soc. Interface 10, 20130098

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Mechanistic Epidemic Modelling: Principles

Consider the biological mechanisms involved in disease
transmission and spread
Model mechanisms and infer their effects
Start as simple as possible!
Rule out simple models by comparing results with observed
time series of incidence or mortality
Add complexity one step at a time, so key mechanisms can be
identified
Ideally converge on simplest possible model that can explain
observed patterns

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Flow Chart and Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Parameters:
Transmission rate β

Recovery rate γ

(or Removal rate)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Derived Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Derived Parameters:

Initial growth rate β − γ

Mean infectious period 1
γ

Basic Reproduction
Number

R0 = β

γ

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Basic SIR Model: Important Results

Epidemic occurs if and only if R0 > 1
Exact solution for phase portrait
Single epidemic, then disease disappears
Exact formula for final size as a function of R0

Cannot explain diseases that persist
Cannot explain recurrent cycles of epidemics

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What are we missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR Model: flow chart

Introduces only one new parameter (σ)
Mean latent period (1/σ) can often be estimated
But. . . effect of inclusion of exposed class usually small

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What are we still missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR Model with vital dynamics: flow chart

New Parameters:
Birth rate (ν for natality)
Death rate (µ for mortality)
Mean latent period (1/σ)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR with vital dynamics and vaccination: flow chart

New Parameters:
Birth rate (ν for natality)
Death rate (µ for mortality)
Mean latent period (1/σ)
Proportion vaccinated (p)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR with vital dynamics and vaccination: Equations

dS
dt = ν(1 − p) − βSI − µS

dE
dt = βSI − σE − µE

dI
dt = σE − γI − µI

dR
dt = νp + γI − µR

Birth rate (ν for natality)
Death rate (µ for mortality)
Proportion vaccinated (p)

Transmission rate (β)
Mean latent period (1/σ)
Mean infectious period (1/γ)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR with vital dynamics and vaccination: Analysis

R0 ?
Biological derivation: (assuming ν = µ and p = 0)
R0 = β × σ

σ+µ × 1
γ+µ ≃ β

γ ∵ 1
µ ≫ max

( 1
σ , 1

γ

)
Mathematical derivation:
R0 = 1 is stability boundary

Final size ? Not well defined (because of continuous source of
new susceptibles).
Equilibria ?

Disease Free Equilibrium (DFE)
Endemic Equilibrium (EE)
That’s all folks.

Periodic solutions ? No.

What else ? Chaos?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR with vital dynamics and vaccination: Results

∃ Endemic Equilibrium ⇐⇒ R0(1 − p) > 1
EE is GAS in this case.
DFE is GAS otherwise.

Eradication ⇐⇒ p > 1 − 1
R0

(herd immunity)
Smallpox: R0 ∼ 4 =⇒ pcrit ∼ 75%
Measles: R0 ∼ 20 =⇒ pcrit ∼ 95%

Explains persistence of diseases (via births)
No periodic solutions ?=⇒ no recurrent epidemics
GAS equilibrium =⇒ no periodic solutions and no chaos
Equilibrium approached by damped oscillations
=⇒ recurrent epidemics
But observed epidemic patterns show undamped
oscillations. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Mechanistic Modelling 19/73

What are we STILL missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Demographic Stochasticity

Differential equations describe the expected behaviour in the
limit that the population size goes to infinity
How do dynamics differ in finite populations?
Re-cast the SEIR model as a stochastic process
(Continuous time Markov process)
Proving anything about stochastic epidemic models is
difficult, but we can easily simulate them and learn a lot
Standard algorithm for creating realizations of a stochastic
epidemic model attributed to Daniel T. Gillespie

Gillespie 1976, J. Comp. Phys. 22, 403–434

Rather than rates of change of compartment sizes
consider event rates for transitions between disease states
Finite number of individuals
Assume event rates depend only on current state of population

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Gillespie Algorithm
Let a1, a2, . . . , be the rates at which the various processes
occur, e.g.,

a1 = birth rate,
a2 = rate of going from susceptible to exposed,
a3 = the rate of going from infectious to removed (recovering),
etc.

Let a0 be the overall event rate, i.e., a0 = ∑
i ai

(so average time between events = 1/a0).
Assume time spent in any state is exponentially distributed
(transitions between states are “Poisson processes”)
∴ Probability next event occurs in (t, t + dt) is a0e−a0tdt
Let u = 1 − e−a0t . Then u ∈ [0, 1] and du = a0e−a0tdt
=⇒ u is uniformly distributed in [0, 1].
∴ Get time t to next event by sampling u from uniform
distribution in [0, 1] and setting t = 1

a0
ln 1

1−u .
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Gillespie Algorithm continued

We now know the time t of the next event, but we must still
determine what type of event occurs at time t.
Probability of event of type i is ai

a0
∴ Can easily determine type of event by sampling a point
from a uniform distribution on [0, a0]:

Event is type i if the uniform deviate lies in the ith interval in
the following list:

[0, a1), [a1, a1 + a2), . . . , [a1 + · · · + ai−1, a1 + · · · + ai), . . .

How do realizations of this process differ from the solution of
the deterministic (differential equation) model?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Gillespie Simulations: Results for Measles Parameters
R0 = 17, Tlat = 8 days, Tinf = 5 days, ν = µ = 0.02/year, N = 5, 000, 000

Earn 2009, IAS/Park City Mathematics Series 14, 151–186

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Effects of Demographic Stochasticity

Sustains transient behaviour (oscillations do not damp out)
(Bartlett 1950’s)

Explains undamped oscillations at a single period

But, unable to explain changes in interepidemic period, or
irregularity

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What are we STILL missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Contact rates are higher during school terms!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Sinusoidal SEIR Model

Transmission rate β is not constant:
high during school terms, low in summer
For simplicity, model as a sine wave:

β(t) = ⟨β⟩
(
1 + α cos 2πt

)
⟨β⟩ = mean transmission rate
α = amplitude of seasonal variation in contact rate

Jan Apr Jul Oct Jan

β
(t

)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Is this change significant?

We now have a forced nonlinear system

Forcing frequency can resonate with the natural timescales of
the disease (e.g., damping period)

Very rich dynamical system. . .
(analogy: forced pendulum)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Sinusoidal SEIR Model: Numerical Results

Stable cycles of various lengths
(annual, biennial, 3-year, . . . )

Multiple co-existing stable cycles

Chaotic dynamics

Lots of work on this model in 1980s and 1990s

Smith HL, 1983, J. Math. Biol. 17, 163–177

Schwartz IB, Smith HL, 1983, J. Math. Biol. 18, 233–253

Aron JL, Schwartz IB, 1984, J. theor. Biol. 110, 665-679

Olsen LF, Schaffer WM, 1990, Science 249, 499–504

. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Sinusoidal SEIR Model: Rigorous Results

There exist parameter values such that infinitely many stable
cycles co-exist

Schwartz IB, Smith HL, 1983, J. Math. Biol. 18, 233–253

There exist chaotic repellors (in a modified SEIR model)
Glendinning P, Perry LP, 1997, J. Math. Biol. 35, 359–373

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles Bifurcation Diagram (Sinusoidal SEIR model)

Earn (2009) IAS/Park City Mathematics Series 14, 151–186

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Does Sinusoidal SEIR Model Explain Measles Dynamics?

SEIR model with sinusoidal forcing:
Produces recurrent undamped epidemics of all frequencies
observed in measles time series.

Produces chaos, which can explain irregular behaviour and
transitions from one type of cycle to another

If correct, this implies these transitions are unpredictable.

BUT. . . the model also predicts rapid extinction of the virus
(not persistence).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What are we STILL missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Is Age Structure Important?

Real system is not homogeneously mixed
Contact structure is age-dependent

Schenzle (1984) argued for creating a Realistically
Age-Structured (RAS) SEIR model

21 age classes (0–1, 1–2, . . . , 19–20, > 20)
SEIR compartments for each age class
Different contact rates between all these age classes

β(t) −→


β1,1(t) β1,2(t) · · · β1,21(t)
β2,1(t) β2,2(t) · · · β2,21(t)

...
... . . . ...

β21,1(t) β21,2(t) · · · β21,21(t)


Schenzle D (1984) IMA Journal of Mathematics Applied in Medicine and Biology 1, 169–191

Lots of work on RAS models since Schenzle (1984)
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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RAS SEIR model: Results for Measles

Persistent biennial cycle
Matches biennial cycle in data extremely well
And we need only 84 ODEs
and fewer than 500 new parameters!
Can get an even better fit by adding spatial structure
with 6000 ODEs and only 1500 new parameters!
Woohoo! Time to celebrate.
hmmm. . . maybe not. . .
In fact, age structure is a RED HERRING!
Critical ingredient of RAS model is. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Contact rates are higher during school terms!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



School Terms 37/73

Sinusoidal forcing vs Term-time forcing

Jan Apr Jul Oct Jan

β
(t

)

Jan Apr Jul Oct Jan

Term Term

Summer

Term

β
(t

)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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RAS model fit to measles in England and Wales
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(a) Observed Measles Biennium and RAS Model Fit

He & Earn (2016) J. R. Soc. Interface 13, 20160156
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Term-time SEIR model fit to measles in England and Wales
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(a) Observed Measles Biennium and
Term-time SEIR Model Fit

He & Earn (2016) J. R. Soc. Interface 13, 20160156
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Term-time SEIR model: Results for Measles

Fits measles time-series just as well as full RAS model
(RAS fit versus Term-time SEIR fit)

No need for hundreds of new parameters!!

Conclude: explicit age structure is unnecessary
To understand aggregate measles time series

In particular, unnecessary for disease persistence
Earn, Rohani, Bolker, Grenfell (2000) Science 287, 667–670

But age-structured models do have their place
To investigate age-structured data
To explore effects of age-structured control strategies

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Term-time SEIR model: Does it explain measles dynamics?

Can we explain the many different patterns of measles
epidemics with the same model?

The sinusoidal SEIR model could do that via chaos.

Term-time SEIR model predicts a strictly biennial cycle of
measles epidemics, at all times and places.

Is superb agreement with post-war measles dynamics in
London and New York coincidental???

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What ELSE might we be missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Let’s review what we’ve learned so far

What helps us explain temporal measles dynamics?
Some key, biologically meaningful parameters

Basic reproductive ratio (R0)
Transmissibility.
Can an epidemic occur? If so, how big?

Amplitude of seasonal forcing (α)
Magnitude of seasonal variation in contact rate.
Stable, sustained oscillations or chaos.

Some parameters are less important than previously thought
Age-structured mixing rates

Whew! Hard to estimate all those parameters anyway. . .
Spatially-structured mixing rates

Whew! Hard to estimate all those parameters anyway. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Let’s review how our analysis has proceeded

Considered a sequence of mechanistic mathematical models of
measles transmission dynamics
Ruled out:

Simple SIR and SEIR models, even with vital dynamics and
vaccination (oscillations damp out)
Stochastic SEIR model (undamped oscillations at only one
frequency)
Sinusoidally forced SEIR model (pathogen goes extinct)

Best model so far:
Term-time forced SEIR model

Excellent description of post-war biennial measles dynamics in
New York and London
BUT: appears unable to explain changes in pattern of
epidemics over long time scales
Humph.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Hmmm. . .

What should we try next?
Do we need more model structure?

We changed β → β(t). Do other parameters
vary significantly with time?

Birth rate?
Death rate?
Vaccination rate?
Other parameters?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Cohorts

The RAS model fit was based on simplifying assumptions
about the transmission matrix (βij(t)) in order to reduce the
number of parameters.

Perhaps we can do better—still without age-structure—but
including the cohort effect:

In the RAS model, everyone moves up one cohort at the start
of each school year.
Consequently, it is as if most births occur on the first day of
school each year (“impulsive births”).
What is the dynamical influence of the cohort effect?

He & Earn (2016) J. R. Soc. Interface 13, 20160156

Compare fits of measles biennium in England and Wales with:
(i) RAS, (ii) term-time, (iii) cohort, (iv) term-time and cohort.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Cohort SEIR model fit to measles in England and Wales
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(a) Observed Measles Biennium and
Cohort-entry SEIR Model Fit

He & Earn (2016) J. R. Soc. Interface 13, 20160156
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Term-time cohort SEIR model fit to measles in E&W
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(a) Observed Measles Biennium and
Cohort-entry term-time SEIR Model Fit

He & Earn (2016) J. R. Soc. Interface 13, 20160156
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Cohort effect: summary

Cohort effect alone (without transmission rate forcing) is
sufficient to generate all the types of dynamics observed in
models with seasonal forcing of the transmission rate
(different dynamics obtained from different proportions of
“births” occurring at start of school year).
The source of seasonal forcing affects the detailed shape of
the time series, but not the potential for complex dynamics.
The best fit to the England and Wales measles biennium is
obtained with term-time forcing together with the cohort
effect.

Nevertheless, we will ignore the cohort effect because it
complicates the model without helping us get to the bottom of
the changes in dynamical structure over time.

This does not address the issue of dynamical structure
changing over time. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Effects of slow changes in birth rate

Consider SIR model with B
births per unit time (B ̸= µN):

dS
dt = B − βSI − µS

dI
dt = βSI − γI − µI

dR
dt = γI − µR

Suppose birth rate changes from
B to B̃:

dS
dt = B̃ − βSI − µS

dI
dt = βSI − γI − µI

dR
dt = γI − µR

How are dynamics affected by the change from B to B̃ ?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Effects of slow changes in birth rate
Consider change of variables in second system with birth rate B̃:

S → S̃ B̃
B , I → Ĩ B̃

B , R → R̃ B̃
B

Birth rate B:
dS
dt = B − βSI − µS

dI
dt = βSI − γI − µI

dR
dt = γI − µR

Birth rate B̃:

dS̃
dt = B − βB̃

B S̃Ĩ − µS̃

d Ĩ
dt = βB̃

B S̃Ĩ − γ Ĩ − µĨ

dR̃
dt = γ Ĩ − µR̃

System with birth rate B̃ is identical (up to scaling) to system
with birth rate B with transmission rate βB̃/B.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Key Insight

Suppose R0 is estimated during a period when the birth rate
is B
If the birth rate changes to B̃ then the dynamical effect is
identical to changing R0 instead:

R0 −→ R0
B̃
B

Similarly, if the birth rate is B and a vaccination programme is
initiated (vaccinating a proportion p of newborns) then the
dynamical effect is identical to

R0 −→ R0(1 − p)

More generally, any change in susceptible recruitment rate is
equivalent dynamically to a change in R0.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Predicting Epidemic Transitions

Changes in
Birth rate (ν)
Vaccination proportion (p)
Transmission rate (β or R0)

all map onto the same parameter axis.

∴ We can summarize possible dynamical changes induced by
demographic/behavioural changes with a one-parameter
bifurcation diagram.

∴ We can predict epidemic transitions by mapping observed
changes in ν, p or R0 onto this diagram.

So let’s try to do that for measles!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles Bifurcation Diagram (wrt ⟨β⟩ ≃ γR0)

Low Birth Rate
High Vaccination

High Birth Rate
Low Vaccination

Earn, Rohani, Bolker, Grenfell (2000) Science 287, 667–670

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in England

Earn, Rohani, Bolker, Grenfell (2000) Science 287, 667–670

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in the United States

Earn, Rohani, Bolker, Grenfell (2000) Science 287, 667–670

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What about other notifiable childhood infectious diseases?

Rubella?
Chicken pox?
Whooping cough?

Does same analysis explain patterns of recurrent epidemics for
these and other diseases?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Does it work more generally?

Alas!
No!

How can this be?!?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Prediction for other diseases

For
Rubella
Whooping Cough
Chicken Pox

only attractor of term-time SEIR model is annual cycle.

Yet data for these diseases show much more complex
dynamics!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Other Childhood Infections

Incidence time series of these diseases show strong spectral peaks
at frequencies not predicted by asymptotic analysis
(i.e., not displayed by attractors of term-time SEIR model)

Bauch & Earn (2003) Proc. R. Soc. Lond. B 270, 1573–1578

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Argh!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What are we STILL missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Demographic Stochasticity Comes to the Rescue (Again!)

Sustains transient behaviour

Linear perturbation theory applied to the attractors of the
model explains other spectral peaks in data

Whew!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Get More Ambitious!

Aim to predict all spectral peaks in the data

Predict Resonant peaks from asymptotic analysis

Predict Non-resonant peaks from perturbation analysis

Predictions are accurate for rubella and whooping cough
Bauch & Earn (2003) Proc. R. Soc. Lond. B 270, 1573–1578

Can we explain more details of measles dynamics?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Another Look at Measles

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Predicted vs Observed Non-Resonant Spectral Peaks

⃝ Measles ▲ Chicken Pox × Whoooping Cough ■ Rubella

r2 = 0.83, p < 10−6 Bauch & Earn (2003) Proc. R. Soc. Lond. B 270, 1573–1578

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Summary so far

Perfect prediction of resonant peaks

Excellent prediction of non-resonant peaks (p < 10−6)

Yippee!

Get even more ambitious. . .

Can we predict magnitudes of spectral peaks?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Can we predict magnitudes of spectral peaks?
Example: Chicken Pox in Ontario vs Manitoba

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Demographic Stochasticity

Sustains transient behaviour
Bartlett 1950s

Greater stochasticity in smaller populations
=⇒ larger non-resonant peaks

Confirmed with stochastic simulations
Bauch & Earn (2003) Proc. R. Soc. Lond. B 270, 1573–1578

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Summary: Modelling recurrent epidemics

We now understand recurrent epidemic patterns of many
infectious diseases
(e.g., measles, chicken pox, whooping cough, rubella, . . . )

Perfect prediction of resonant spectral peaks

Excellent prediction of non-resonant spectral peaks

Population size is key determinant of relative magnitude of
resonant vs non-resonant peaks
(can only get at this with simulations at present)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Summary: Key Parameters

Basic reproductive ratio: R0
Threshold for an epidemic to occur

Amplitude of seasonal forcing: α

Sustained oscillations of different frequencies

Effective reproductive ratio: R0(1 − p)ν ′/ν

Transitions in epidemic frequency/pattern

Population size: N
Relative magnitude of spectral peaks

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Can We Estimate the Key Parameters?

Basic reproductive ratio: R0
Yes, e.g., via mean age at infection

Amplitude of seasonal forcing: α

Difficult: must use the disease time series itself
If possible, estimate from time series for several different
diseases in same place and same time period

Effective reproductive ratio: R0(1 − p)ν ′/ν

Yes, vaccination and birth rates are documented

Population size: N
Yes, well known.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Advice to Take Home

Start simple!!!
Don’t add more structure and more parameters unless you’re
sure that the simpler model with fewer parameters is not
adequate to explain the phenomena of interest.

Increase complexity in steps
Rule out simpler models first
Try to add one parameter at a time, and if possible then do
this independently for different parameters before trying to
analyze a model with several new parameters.

Beware of parameters that cannot be estimated
Results are only as reliable as your parameter guesses
Useful only to examine potential influences of mechanisms

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology


