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Announcements

m Next week's lecture will be recorded in advance and posted on
the Echo 360 page for this course.

m Live Q&A, either in last hour of scheduled class or at a
mutually convenient time.
m Assignments:

m Assignment 1 due 23 Sep 2024 (next Monday)
m Assignment 2 due 7 Oct 2024
(good to work on before class on 1 Oct 2024)

m Class on 1 Oct 2024 will be given by Mikael Jagan
(install epigrowthfit before that class)

m Lecture on 8 Oct 2024 will pre-recorded and posted

Instructor: David Earn
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SARS in 2003 (Worldwide)

Probable cases of SARS by week of onset

160+ Worldwide* (n=5,910), 1 November 2002-10 July 2003
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“This graph does not include 2,527 probable cases of SARS (2,521 from Beijing, China), for whom no dates of onset are currently available.
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Some SARS Facts

High case fatality

m 1918 flu < 3%
m SARS > 10%

Long hospital stays

m Mean time from admission to discharge or death:
~ 25 days in Hong Kong

8098 probable cases, 774 deaths

m How bad would it have been if it had not been controlled?

Instructor: David Earn



estral) hospitalization and survival in Ontario
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Fig. 4 Age-dependent COVID-19 hospitalization probability for known SARS-CoV-2 infection (panel a) and survival probability for hospitalized
patients (panel b) in Ontario. We give age-by-age estimates of each probability (points; 95% exact binomial confidence intervals given by vertical
lines), where point area is proportional to age-specific sample size. We additionally provide more precise estimates of these probabilities under
stricter assumptions, modelling the hospitalization probability using a generalized additive model and the survival probability using a generalized
linear model (curves; 95% confidence bands given by shaded regions). See “Methods” section for details

Papst et al (2021), BMC Public Health, 21:706

Instructor: David Earn
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London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn



London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn



Mortality Bills are typically handwritten

Instructor: David Earn



But handwriting is usually very clear

Instructor: David Earn



But handwriting is usually very clear

Instructor: David Earn



The Great Plague of London, 1665
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The Great Plague of London, 1665

1000 | ® RN

Weekly Deaths fro
S 38
8 8
|
‘\
/

°
0 eeeco0e0e®®

T T T
Jul Oct Jan

Date

Instructor: David Earn



London Plague of 1593
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London Plague of 1603
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London Plague of 1625
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Weekly Deaths from Plague in London, 1592-1666
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Some Plague Facts

Plague epidemics recorded from Roman times to early 1900s.
2> 1/3 Europe’s population died in “Black Death” of 1348
m ~ 300 years for the population to reach the same level.

Recently (2011) established (at McMaster!) that the
pathogen that caused The Black Death was Yersinia pestis

[Bos et al. 2011, Nature 478, 506-510]
More recently (2014) established (again at McMaster!) that

the pathogen that caused The Plague of Justinian (541-543
AD) was Yersinia pestis

[Wagner et al. 2014, Lancet Infectious Diseases 14, 319-326]

m Y. pestis still a concern?
Yes: Rodent reservoir, antibiotic-resistant strains, bioterrorism

m Spatial data for any plagues? Yes, for London in 1665. ..

Instructor: David Earn



Visualization of spatial structure of Great Plague

m GIS encoding of parish boundaries
m Overlay parish boundaries on more modern map for reference
m Colour parishes as they become infected

m Is there evidence for spatial spread or was the spatial pattern
random?

m DE low-tech animation. ..

m CBC high-tech animation. ..

m The Nature of Things, 21 August 2014.

http://www.cbc.ca/natureofthings/episodes/
secrets-in-the-bones-the-hunt-for-the-black-death-killer

Instructor: David Earn


http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer
http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer

Visualization of entire course of the Great Plague

m What happenned after initial spatial spread?
m Visualize full spatial epidemic structure
m Show magnitude of epidemic in each parish with cylinder.

m Epidemic Visualization (EpiVis) software by Junling Ma.

Instructor: David Earn



P&l mortality in U.S.A., 1910-1998
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Influenza Incidence Patterns (lab confirmed)
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Influenza Evolution

Molecular
phylogenetic
reconstruction of
influenza A/H3N2
evolution,
1985-1996

(Fitch et al. 1997)

Instructor: David Earn



Measles in New York City, 1928-1972

Monthly Cases
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Mumps in New York City, 1928-1972
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Chicken Pox in New York City, 1928-1972
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Childhood diseases in New York City, 1928-1972
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Measles in Ontario, 1904-1989
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Chicken Pox in Ontario, 1924-1989
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Rubella in Ontario, 1924-1989

Weekly Cases
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Whooping Cough in Ontario, 1904-1989

Monthly Cases
1200 —
1000 —

800 —

600 —

400 —

0

1920 1940 1960 1980

Instructor: David Earn



Childhood diseases in Ontario, 1904-1989
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Ontario Disease Notification Data

Instructor: David Earn



Dominion Bureau of Statistics Disease Notification Data

Instructor: David Earn



All Historical Canadian Infectious Disease Data

https://canmod.net/digitization/

Instructor: David Earn


https://canmod.net/digitization/

Recurrent epidemics of childhood infections

m Childhood diseases in New York City, 1928-1972

m Childhood diseases in Ontario, 1904-1989

Instructor: David Earn



Measles incidence in England and Wales, 1944-1995

Weekly Cases
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Measles incidence in England and Wales, 1944-1995
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Why

study measles epidemics?

m ~ 140,000 annual deaths

from measles

A major cause of
vaccine-preventable deaths.

Potential impact in
developed countries during
vaccine scares (e.g., MMR
scare in UK in 1990s).

Understand past patterns
Predict future patterns
Manipulate future patterns

Develop vaccination strategy
that can...

Instructor: David Earn



https://www.who.int/news-room/fact-sheets/detail/measles
https://www.who.int/news-room/fact-sheets/detail/measles

Other reasons to model infectious disease epidemics

m Mathematical models make hypotheses and inferences precise

m Give better advice to policymakers
m Make better predictions

m Host-pathogen dynamics are important aspects of ecosystem
dynamics
m Infectious disease models more likely to be successful than
predator-prey models

m Excellent data for human infectious diseases
m Models can be tested!

Instructor: David Earn



Modelling population dynamics of childhood infections

m The basic SIR model cannot explain recurrent epidemics.

m What should we do?. .. The usual options:
Get depressed, drop the course.

K Keep developing models until we can explain recurrent
epidemics.

m First, let's talk about tools that allow us to make our
questions about time series data more precise.

Instructor: David Earn



Epidemic Data
Analysis




Time Plots of Temporal Epidemic Patterns
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Time Plots of Transformed Data

m Reveal unobvious aspects of time series
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Times Plots of Smoothed Data

m Reveal trends clouded by noise or seasonality

m Moving Average:

1 a
2a+1 Z Xtk
1=

—a

Xy —

m Replace original data points x; with averages of nearby points.

m Linear filter:
o0
Xe = > AiXeti

1=—00

m Generalization of moving average.
m Weights \; can be nonlinear functions of /.

Instructor: David Earn



Times Plots of Smoothed Data
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Times Plots of Smoothed Data
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Times Plots of Smoothed Data
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Correlation

m Recurrent epidemics = number of cases now is correlated
with number of cases in the past and the future.

m Given N pairs of observations of different quantities,
{(xi,yi) - i=1,..., N}, the correlation coefficient is defined
to be

YR
VM (6 — 22 SN (1 - 7)?

where X and y are the means of {x;} and {y;}, respectively.

Instructor: David Earn



Correlation

Properties of the correlation coefficient:
m-1<r<l1 (Proof? Cauchy-Schwarz inequality)

mr=1 <= all points lie on a line with positive slope
(“complete positive correlation™)

m r =—1 <= all points lie on a line with negative slope
(“complete negative correlation™)

mr~0 = "“uncorrelated”
m Interpretation: r? is the proportion of the variance in y
explained by a linear function of x.
Derivations and discussions:
m MathWorld on r?, Wikipedia on r?

m Wikipedia on general coefficient of determination

Instructor: David Earn


https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
http://mathworld.wolfram.com/CorrelationCoefficient.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Coefficient_of_determination

Autocorrelation

m Given a single sequence of observations {x; : t =1,..., N},
we can compute the correlation of each observation with the
observation k time steps in the future.

m Thus, we consider the pairs of observations
{(Xtyxk+t) : t =1,..., N — k} and define the autocorrelation
coefficient at lag k to be

e = SF (e — X1 n—k) Xkt — Rut1n)

VENE e — Rvei)? S (e — Rern)?

where X1 ny—k and X1,y are the means of first and last N — k
observations, respectively.

Instructor: David Earn



Autocorrelation

m If number of observations N is large and lag k < N then

2 e = X) (e — X)
e = N —
Se=1(xe — X)?

m Approximation of ry is worse for larger lags k

m Plot of autocorrelation ry as a function of lag k is called the
correlogram.

Instructor: David Earn



Correlogram
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m Peaks in correlogram = periodicities in original time series.
m Correlograms of temporal segments are often informative.

Instructor: David Earn
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Spectral Density

m Can we compute the dominant periods in the time series?
(Rather than estimating them by eye from the correlogram.)

m Express the time series as a Fourier series:

(N/2)-1
xx=ao+ | Y. (apcoswpt+ bpsinwpt) | +aycost,
p=1

where w, = 2mp/N.

m Compute the Fourier coefficients {ap}, {bp} by taking inner
products with coswpt and sinwpt.

Instructor: David Earn


https://en.wikipedia.org/wiki/Fourier_series

Spectral Density

m Fourier coefficients of x; are:

_ 1
aoZX:NZXt,
t
2 2 .
ap = Nthcosth, bp:Nthsmwpt,
t t
1
an/2 = N (—1)tXt7
t

where sum is over observation times.
m Estimated power spectral density (PSD) at frequency wp is™:
N 5 2
l(wp) = E(ap + bp)

*The normalization by N /47 is the convention chosen by Chatfield (2004, “Analysis of Time Series: An
Introduction”). Other normalization conventions are also in common use.

Instructor: David Earn


https://en.wikipedia.org/wiki/Spectral_density
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173

Spectral Density

m There are many different ways to express the power spectral
density (aka power spectrum).

m Most common/useful equivalence is that the power spectrum
is the discrete Fourier transform of the correlogram:

1 N-1
l(wp) = — (ro +2) coswpk>

k=1

m Plot of estimated power spectrum as a function of frequency
wp is called the frequency periodogram or just the
periodogram.

Instructor: David Earn


https://en.wikipedia.org/wiki/Discrete_Fourier_transform

Spectral Density
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Spectral Density
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density Properties

Periodogram is discrete Fourier transform of correlogram

m Same information in correlogram and periodogram

Periodogram usually easier to interpret
m In @, calculate power spectrum with spectrum()

m The power spectrum /(w,) partitions the variance in the time
series with respect to frequency wp.
m Parseval’s theorem implies & >, (x — X)? = 525 > ps0 H(Wp)-
But >, (x — X)? = Var{x.}, hence I(w,)/(27N) is the
proportion of the variance in the time series associated with
period 27 /wp. [For details, see Chatfield (2004).]

Instructor: David Earn


https://en.wikipedia.org/wiki/Parseval's_theorem
https://en.wikipedia.org/wiki/Variance
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173

Basic Time Series Analysis of Epidemic Data

Time Plot (Measles in England and Wales)
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More on

Time Series
Tools




Spectral Density of Temporal Segments

m Pre-war measles
m Post-war pre-vaccination measles
m Vaccination era measles

m Vaccination era measles until 1990

Instructor: David Earn



Time series analysis functions

@ has built-in tools for time series analysis:

Time plot: plot() etc.
Linear filter (e.g., moving average): filter ()

Correlogram (auto-correlation function): acf ()

Periodogram (power spectrum): spectrum()

You will use all of these functions in Assignment 4.

Instructor: David Earn



More sophisticated spectral method

m Traditional power spectrum measures frequency content of
entire time series.

m Wavelet decomposition is local in time.
m Reveals changes in the spectrum over time without having to
identify distinct temporal segments yourself.

m Nice intro to wavelet analysis of time series:
Torrence and Compo (1998) “A Practical Guide to Wavelet
Analysis” Bulletin of the American Meteorological Society 79,
61-78

m 3 @ packages for wavelet analysis of time series (e.g.,

WaveletComp, wavelets), and at least one book on wavelet
methods in @

Instructor: David Earn


http://www.hs-stat.com/WaveletComp/
https://www.rdocumentation.org/packages/wavelets/versions/0.3-0
http://www.springer.com/gp/book/9780387759609
http://www.springer.com/gp/book/9780387759609

Wavelet Spectrum of Monthly Measles in New York City
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Instructor: David Earn



Wavelet Spectrum of Weekly Measles in New York City
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Figure 5. Observed measles dynamics in NYC from 1891 to 1984. (a) Square root of measles case reports, normalized by total concurrent population. (b) Colour
depth plot of a continuous wavelet transform of the square root of normalized observed NYC measles cases (colour warmth scales with spectral power and 95%
significance contours are shown in black). Shaded regions in the upper left and right indicate the cone of influence.

Hempel & Earn 2015, J. R. Soc. Interface 12, 20150024

Instructor: David Earn



Wavelet Spectrum of Weekly Smallpox in London
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Statistical Modelling of Time Series

m Imagine time series {X;} is generated by random processes.

m Simplest case: X; (number of cases at time t) is simply a
random variable with a known distribution,

Xt:/_,L—i—Zt (*)

where p = time average number of cases
and {Z;} = sequence of random variables with zero mean.

m Might be a reasonable model for importation of new,
infectious individuals into a focal community.

m Bad model for epidemics: ignores transmission from one
individual to another.
m There must be a correlation between the number of individuals
in the focal community who are infected now and the number
who will be infected in the near future.
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Statistical Modelling of Time Series: AR and MA

m So, imagine that that successive data points in {X;} are
correlated.

m For example, perhaps the data are generated by an
autoregressive (AR) process:

Xe—p = o1 (Xe—1 — p) + co(Xe—2 — ) + -+ + ap(Xe—p — p)+2Zs

where the «; are constants that determine the degree of
correlation along the time series.

m Alternatively, the data might be generated by a moving
average (MA) process:

Xe—p=PBoZi+ 121+ -+ Bgli—q,
where the [3; are constants that define a weighted average.
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Statistical Modelling of Time Series: ARMA

m More generally, the data might be generated by an
autoregressive moving average “ARMA(p, q)" process:

Xe —p=o1(Xee1 — p) + 0o(Xez — p) + -+ ap(Xe—p — 1)
+ BoZs + Br1li—1+ -+ Bgli—q -
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Statistical Modelling of Time Series: ARIMA

m Finally, an autoregressive integrated moving average
“ARIMA(p, d, q) " model includes weighted differences of the
time series:

Xe —p=a1(Xee1 — p) + aa(Xeeo — ) + - + Oép(Xt—p — 1)
+ Y1(Xem1 — Xe—2) + 72(Xe—2 — Xe—3) + -
+ BoZs + B1li—1+ -+ Bgli—q -

m The “I” in ARIMA refers to the original time series X;, which
is an “integrated” version of the differenced time series.

m Technically, an ARIMA model is just an ARMA model with
differently labelled coefficients, but explicit differences are
often helpful conceptually (e.g., they can “stationarize” a time
series).
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What kind of process generated our data?

How can we tell if our data were generated by such a process?
Can we identify an AR(p), MA(q) or ARMA(p, q) process?

Compare time plots of these processes with time plot of our
data?  (Comparison by eye often challenging/unreliable.)

Compare autocorrelation functions (correlograms) of these
processes with correlogram of our data?  (Better.)

Compare power spectra (periodograms) of these processes
with periodogram of our data?  (Even better.)

Compare wavelet spectra of these processes with wavelet
spectrum of our data?  (Better yet.)
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Statistical Modelling of Time Series: ARMA fitting

Looking at the power spectra of ARMA models would be
instructive.

But is there a better approach to discovering if an ARMA
model could explain our data?

Find the best fit ARMA parameters by minimizing the residual
sum of squares. e.g., for an AR model, minimize:

N

5= Z [(xt = 1) = a1(xe—1 — p) = - — ap(xe—p — #)]2 .
t=p+1

More generally, we can find the best fit parameters of an
ARIMA(p, d, q) model

m Non-trivial, but there are standard methods
Compare models with Akaike Information Criterion (AIC),
which penalizes models that have more parameters

m See Earn (2009) review article for more discussion of this.
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https://en.wikipedia.org/wiki/Akaike_information_criterion
https://davidearn.mcmaster.ca/publications/Earn2009

Time series tools discussed so far. ..

m Statistical description of time series:
time plot, moving average, correlation coefficient,
autocorrelation, correlogram, power spectral density (PSD),
periodogram, wavelet spectrum

m Time series models:
AR, MA, ARMA, ARIMA
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Statistical Modelling of Time Series

How to do it in @ . ..

m Simulate any ARIMA(p, d, g) model with arima.sim()
m Fit an AR model to a time series with ar ()
m Fit an ARIMA model to a time series with arima ()

m Alternatively, there are specialized time series modelling
packages.
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ARMA Example (50 years of weekly data)

my.model <- list(ar=c(1,-0.5,0.5,-0.25) ,ma=c(-0.25,0.5))
my.sim <- arima.sim(n=52%50,model=my.model,sd=0.1)
plot(my.sim,main="ARMA Example",ylab="",6xaxs="i")

ARMA Example
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ARMA Example (ACF and PSD up to 10 year lag)
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Statistical Modelling of Time Series: Forecasting

m Once we have a fitted model, we can then use it to forecast
future observations

m Validate this procedure by using part of the data to fit the
model and then forecast the remainder of the data (cf.

cross-validation)

m How successful is this likely to be for an infectious disease

time series?
m Conceivably good for chicken pox in NYC.
m Less likely to be good for measles. . . at least for the main

patterns. ..
m One of the project options is to look at this more carefully.
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https://en.wikipedia.org/wiki/Cross-validation_(statistics)

Statistical Modelling of Time Series: Limitations

m It might be best to remove mean, trend and seasonality before
fitting an ARMA model

m But this means we will remove the aspects of the data about
which we care most!

m The fitted parameters of an ARMA model have no obvious
biological meaning
m The model completely ignores any understanding we have of
infectious disease transmission

m Statistical models use the time series itself to parameterize an
ARMA (or more general) process
m It would be better to have a model that we can parameterize
from independently collected data and then see if that model
can explain the observed time series
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Mechanistic Mathematical Modelling

m SIR and all that. ..

m Takes into account transmission process. ..

m So why did we just spend time talking about statistical
modelling of time series?

Important to be familiar with time series models that are in
common use.
Helps us appreciate the value of mechanistic modelling.
Some processes that affect disease dynamics might be better
modelled as ARMA or similar processes.
m Weather (e.g., perhaps model 8 = 3(t) as an ARMA process)
® Immigration
Ruling out an ARMA model (or at least one with a modest
number of parameters) is a step towards finding a good model.
A combination of mechanistic and time series models could be
useful.
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