3 [Epidemic Data and Time Series Tools](#page-1-0)

1/90

Mathematics and Statistics M $d\omega =$ *∂*M *ω*

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 3 Epidemic Data and Time Series Tools Tuesday 17 September 2024

- Next week's lecture will be recorded in advance and posted on the Echo 360 page for this course.
	- Live Q&A, either in last hour of scheduled class or at a mutually convenient time.
- **Assignments:**
	- Assignment 1 due 23 Sep 2024 (next Monday)
	- Assignment 2 due 7 Oct 2024 (good to work on before class on 1 Oct 2024)
- Class on 1 Oct 2024 will be given by Mikael Jagan (install epigrowthfit before that class)
- Lecture on 8 Oct 2024 will pre-recorded and posted

P&I Mortality, Philadelphia, 1918

P&I Deaths

SARS in 2003 (Worldwide)

*This graph does not include 2,527 probable cases of SARS (2,521 from Beijing, China), for whom no dates of onset are currently available.

SARS in 2003 (Toronto)

$N = 249$ (of 250 reported)

Some SARS Facts

 \blacksquare High case fatality

- 1918 flu *<* 3%
- \blacksquare SARS $> 10\%$

Long hospital stays

Mean time from admission to discharge or death: \sim 25 days in Hong Kong

8098 probable cases, 774 deaths

How bad would it have been if it had not been controlled?

COVID (ancestral) hospitalization and survival in Ontario

Fig. 4 Age-dependent COVID-19 hospitalization probability for known SARS-CoV-2 infection (panel **a**) and survival probability for hospitalized patients (panel **b**) in Ontario. We give age-by-age estimates of each probability (points; 95% exact binomial confidence intervals given by vertical lines), where point area is proportional to age-specific sample size. We additionally provide more precise estimates of these probabilities under stricter assumptions, modelling the hospitalization probability using a generalized additive model and the survival probability using a generalized linear model (curves; 95% confidence bands given by shaded regions). See "Methods" section for details

> current standard of care and viral variant. In the absence Papst et al (2021), BMC Public Health, 21:706

The Black Death in London, England, 1348–1349

London Bill of Mortality, 26 Sept to 3 Oct 1665

The Difeases and Cafualties this Week. London 41 From the 26 of September to the 3 of October 1665 Frighted-Bur, Plag- $\begin{array}{|l|l|l|l|} \hline 16 & 13 & S^t & \text{George Berobhhino} & 1 \\ \hline 46 & 34 & S^t & \text{Gregory by } S^t & \text{Pauli}-26 \\ \hline 1 & 1 & S^t & \text{Helken} & 6 \\ \hline \end{array}$ Line Woodftree St Marcin Ludg I₂ 10 Gric 42 41 St James Dukes place 27 Griping in the Gurs Hows Hooviano 44 **Laundies** Hallows Ronyand 7 17 St James Garlickhiche-1
25 St John Bageift - 1
25 St John Examplift - -11 Library Staining 21 18 St John Zschary-12 **Infants** hallows the Wall-33 St Katharine Coleman- -3016 Kingfevil-S^e Katharine Crechurch 34 Andrew Hubbard-St Lawrence Jewry-Meagrome Michael Queenhithe-25 Andrew Underfast -- 16 S^t Lawrence Pountney-14 1b Plague Andrew Wardrobe-S^e Leorard Esftcheap-3 S^e Michael Ro Ann Alderfgare - 18 S' Lemand Fofterlane-16 13 S' Michael Royal-Puroles St Magnus Parith-Rickets Mildred Poultrey popjexic Rifing of the Lights-Auftins Parifh-Margaret Mofes-Revelationse w Exchange S^t Margare: Newfifthftree: 1 S 1 3 Rupture-Benner Fynck-S' Margarez Patrons-4 St Nicholas Olaves-Benne: Gracechurch-Scurvy anet Paulfwharf-I S' Olive Hartflreet-**Spotted Feaver** Mary Aldermanhors-St Olave Jewry ... St Mary Aldermary-Confumption S' Olave Silve Bennet Seriengigace -St Mary le Bow ------Convultion hrifts Church S' Mary Botham-S^t Ptter Ch S^t Mary Colechurch-Stopping of the ftomach Ciement Eaftcheap-I St Mary Hill Dionis Backchurch-9 S' Peter Paulfwharf-St Mary Mountham-1 Drownd at St. Martin in the 10 10 Diretto Fift S^t Peter Poor. Surfeit Edmund Lumberditr. 3 S⁵ Mary Stayning-St Steven Colemanfly Fields-St Sceven Walbrook Teer St Mary Woolch I ja Feaver S^t MITT. Wooleash. **Thru(h** St Thomas Apoftly **Fiftula** D Ircmonecelane Flox and Small-pox-Tiffick ^e Gabriel Fenchurch-2 **Trinity Parith** Christman in the 97 Parifices which is the Walls-40 39 Burled 1149 Plague Vomiting-Found dead in the Fields at Winde St. Mary Iflington Wormes (Males-3212) $Males$ 68 Christman in the 16 Persibles without the Wells-45 Baried, and at the Pethon, e-2358 Piet at - 1922 Chriftned Females-78 Buried Females -3248 Plague-5533 $(L_0$ all $- -6460)$ $\ln 1$ Decreafed in the Burials this Week- -1837 Parithes clear of the Plague 7 Parithes Infected 122 Christmas I. 2 car Pariflers in Middlefer and Survy-40 Saving Capture 1633 Plegue 1463 The Affixe of Bread festorsh by Order of the Lord Maior and Court of Aldermin, A penny Wheaten Loaf to contain Nine 'Ounces and a half, and three half-penny White Loaves the like weight. Christmal in the 5 Parifices in the City and Libraries of Westmander - 13 Smith - 650 21c, - 590

London Bill of Mortality, 26 Sept to 3 Oct 1665

Frighted Gowt Grief Griping in the Gurs Jaundies-Impofthum Infants-Kingfevil Meagrome Plague Purples

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

Mortality Bills are typically handwritten

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

But handwriting is usually very clear

But handwriting is usually very clear

The Great Plague of London, 1665

The Great Plague of London, 1665

London Plague of 1593

London Plague of 1603

London Plague of 1625

Weekly Deaths from Plague in London, 1592–1666

Weekly Plague in London, 1640–1648

Some Plague Facts

- **Plague epidemics recorded from Roman times to early 1900s.**
- ≥ 1/3 Europe's population died in "Black Death" of 1348
	- $\blacksquare \sim 300$ years for the population to reach the same level.
- Recently (2011) established (at McMaster!) that the pathogen that caused The Black Death was Yersinia pestis

[Bos et al. 2011, **Nature 478**, 506–510]

■ More recently (2014) established (again at McMaster!) that the pathogen that caused The Plague of Justinian (541–543 AD) was Yersinia pestis

[Wagner et al. 2014, **Lancet Infectious Diseases 14**, 319–326]

 \blacksquare Y. pestis still a concern?

Yes: Rodent reservoir, antibiotic-resistant strains, bioterrorism

Spatial data for any plagues? Yes, for London in 1665...

Visualization of spatial structure of Great Plague

- GIS encoding of parish boundaries
- Overlay parish boundaries on more modern map for reference
- Colour parishes as they become infected
- \blacksquare Is there evidence for spatial spread or was the spatial pattern random?
- **DE** low-tech animation...
- CBC high-tech animation...
	- The Nature of Things, 21 August 2014. [http://www.cbc.ca/natureofthings/episodes/](http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer) [secrets-in-the-bones-the-hunt-for-the-black-death-killer](http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer)

Visualization of entire course of the Great Plague

- What happenned after initial spatial spread?
- **Nitualize full spatial epidemic structure**
- Show magnitude of epidemic in each parish with cylinder.
- **Epidemic Visualization (EpiVis) software by Junling Ma.**

P&I mortality in U.S.A., 1910-1998

Influenza Incidence Patterns (lab confirmed)

Earn, Dushoff & Levin 2002, Trends in Ecology and Evolution **17**, 334–340

Influenza Evolution

Molecular phylogenetic reconstruction of influenza A/H3N2 evolution, 1985–1996 (Fitch et al. 1997)

Measles in New York City, 1928–1972

Mumps in New York City, 1928–1972

Childhood diseases in New York City, 1928–1972

Measles in Ontario, 1904–1989

Chicken Pox in Ontario, 1924–1989

Rubella in Ontario, 1924–1989

Whooping Cough in Ontario, 1904–1989

Childhood diseases in Ontario, 1904–1989

Ontario Disease Notification Data

Dominion Bureau of Statistics Disease Notification Data

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

All Historical Canadian Infectious Disease Data

<https://canmod.net/digitization/>

Recurrent epidemics of childhood infections

- [Childhood diseases in New York City, 1928–1972](#page-30-0)
- Childhood diseases in Ontario, 1904-1989

Measles incidence in England and Wales, 1944–1995

Measles incidence in England and Wales, 1944–1995

Why study measles epidemics?

- ∼ 140*,* 000 [annual deaths](https://www.who.int/news-room/fact-sheets/detail/measles) [from measles](https://www.who.int/news-room/fact-sheets/detail/measles)
- A major cause of vaccine-preventable deaths.
- **Potential impact in** developed countries during vaccine scares (e.g., MMR scare in UK in 1990s).
- **Understand past patterns**
- **Predict future patterns**
- **Manipulate future patterns**
- **Develop vaccination strategy** that can. . .

Other reasons to model infectious disease epidemics

Mathematical models make hypotheses and inferences precise

- Give better advice to policymakers
- **Make better predictions**
- Host-pathogen dynamics are important aspects of ecosystem dynamics
	- \blacksquare Infectious disease models more likely to be successful than predator-prey models
- **Excellent data for human infectious diseases**
	- **Models can be tested!**

Modelling population dynamics of childhood infections

- **The basic SIR model cannot explain recurrent epidemics.**
- What should we do?... The usual options:
	- **1** Get depressed, drop the course.
	- **2** Keep developing models until we can explain recurrent epidemics.

First, let's talk about tools that allow us to make our questions about time series data more precise.

Epidemic Data Analysis

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

Time Plots of Temporal Epidemic Patterns

Weekly Measles in England and Wales

Time Plots of Transformed Data

Reveal trends clouded by noise or seasonality

Moving Average:

$$
x_t \to \frac{1}{2a+1} \sum_{i=-a}^{a} x_{t+i}
$$

Replace original data points x_t with averages of nearby points.

 \blacksquare Linear filter:

$$
x_t \to \sum_{i=-\infty}^{\infty} \lambda_i x_{t+i}
$$

- Generalization of moving average. \blacksquare
- Weights λ_i can be nonlinear functions of *i*.

- Recurrent epidemics \implies number of cases now is correlated with number of cases in the past and the future.
- Given N pairs of observations of different quantities, $\{(x_i, y_i): i = 1, \ldots, N\}$, the *correlation coefficient* is defined to be

$$
r = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}
$$

where \bar{x} and \bar{y} are the means of $\{x_i\}$ and $\{y_i\}$, respectively.

Correlation

Properties of the correlation coefficient:

- $-1 < r < 1$ (Proof? [Cauchy-Schwarz inequality\)](https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality)
- **■** $r = 1 \iff$ all points lie on a line with positive slope ("complete positive correlation")
- \blacksquare $r = -1 \iff$ all points lie on a line with negative slope ("complete negative correlation")
- $r \simeq 0 \implies$ "uncorrelated"
- Interpretation: r^2 is the proportion of the variance in y explained by a linear function of x .

Derivations and discussions:

- [MathWorld on](http://mathworld.wolfram.com/CorrelationCoefficient.html) r^2 , [Wikipedia on](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) r^2
- [Wikipedia on general coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination)

Autocorrelation

- Given a single sequence of observations $\{x_t : t = 1, \ldots, N\}$, we can compute the correlation of each observation with the observation k time steps in the future.
- \blacksquare Thus, we consider the pairs of observations $\{(x_t, x_{k+t}): t = 1, \ldots, N-k\}$ and define the *autocorrelation* coefficient at lag k to be

$$
r_k = \frac{\sum_{t=1}^{N-k} (x_t - \bar{x}_{1,N-k})(x_{k+t} - \bar{x}_{k+1,N})}{\sqrt{\sum_{t=1}^{N-k} (x_t - \bar{x}_{1,N-k})^2 \sum_{t=1}^{N-k} (x_{k+t} - \bar{x}_{k+1,N})^2}}
$$

where $\bar{x}_{1,N-k}$ and $\bar{x}_{k+1,N}$ are the means of first and last $N-k$ observations, respectively.

If number of observations N is large and lag $k \ll N$ then

$$
r_k \simeq \frac{\sum_{t=1}^{N-k} (x_t - \bar{x})(x_{k+t} - \bar{x})}{\sum_{t=1}^{N} (x_t - \bar{x})^2}
$$

- **Approximation of** r_k **is worse for larger lags k**
- Plot of autocorrelation r_k as a function of lag k is called the correlogram.

Correlogram

Peaks in correlogram \implies periodicities in original time series. $\mathcal{L}_{\mathcal{A}}$ Correlograms of temporal segments are often informative.

Correlogram: exact vs. approximate r_{ki}

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

- Can we compute the dominant periods in the time series? (Rather than estimating them by eye from the [correlogram.](#page-56-0))
- Express the time series as a [Fourier series:](https://en.wikipedia.org/wiki/Fourier_series)

$$
x_t = a_0 + \left(\sum_{p=1}^{(N/2)-1} (a_p \cos \omega_p t + b_p \sin \omega_p t)\right) + a_{N/2} \cos \pi t,
$$

where $\omega_p = 2\pi p/N$.

Gompute the Fourier coefficients $\{a_p\}$, $\{b_p\}$ by taking inner products with $\cos \omega_p t$ and $\sin \omega_p t$.

Fourier coefficients of x_t are:

$$
a_0 = \bar{x} = \frac{1}{N} \sum_t x_t,
$$

\n
$$
a_p = \frac{2}{N} \sum_t x_t \cos \omega_p t, \qquad b_p = \frac{2}{N} \sum_t x_t \sin \omega_p t,
$$

\n
$$
a_{N/2} = \frac{1}{N} \sum_t (-1)^t x_t,
$$

where sum is over observation times.

Estimated [power spectral density \(PSD\)](https://en.wikipedia.org/wiki/Spectral_density) at frequency ω_p is^{*}:

$$
I(\omega_p) = \frac{N}{4\pi} (a_p^2 + b_p^2)
$$

*[⋆]*The normalization by N*/*4*π* is the convention chosen by [Chatfield \(2004, "Analysis of Time Series: An](https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173) [Introduction"\).](https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173) Other normalization conventions are also in common use.

- **There are many different ways to express the [power spectral](#page-59-0)** [density](#page-59-0) (aka power spectrum).
- \blacksquare Most common/useful equivalence is that the power spectrum is the [discrete Fourier transform](https://en.wikipedia.org/wiki/Discrete_Fourier_transform) of the [correlogram:](#page-56-0)

$$
I(\omega_p) = \frac{1}{\pi} \left(r_0 + 2 \sum_{k=1}^{N-1} r_k \cos \omega_p k \right)
$$

Plot of estimated power spectrum as a function of frequency ω_p is called the *frequency periodogram* or just the periodogram.

Spectral Density Properties

- **Periodogram is discrete Fourier transform of correlogram**
- Same information in correlogram and periodogram
- **Periodogram usually easier to interpret**
- In \mathbb{R} , calculate power spectrum with spectrum()
- **The power spectrum** $I(\omega_p)$ **partitions the variance in the time** series with respect to frequency $ω_p$.
	- [Parseval's theorem](https://en.wikipedia.org/wiki/Parseval) implies $\frac{1}{N} \sum_t (x_t \bar{x})^2 = \frac{1}{2\pi N} \sum_{p>0} I(\omega_p)$. But $\frac{1}{N}\sum_{t}(x_t - \bar{x})^2 = \text{Var}\{x_t\}$, hence $I(\omega_p)/(2\pi N)$ is the proportion of the [variance](https://en.wikipedia.org/wiki/Variance) in the time series associated with **period** $2\pi/\omega_p$. [For details, see [Chatfield \(2004\).](https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173)]

Basic Time Series Analysis of Epidemic Data

More on Time Series Tools

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

- **[Pre-war measles](#page-63-0)**
- **[Post-war pre-vaccination measles](#page-64-0)**
- **Naccination era measles**
- [Vaccination era measles until 1990](#page-66-0)

Time series analysis functions

W has built-in tools for time series analysis:

- Time plot: plot() *etc.*
- **Linear filter** (e.g., moving average): $filter()$
- Correlogram (auto-correlation function): acf()
- **Periodogram (power spectrum): spectrum()**

You will use all of these functions in **Assignment 4.**
More sophisticated spectral method

- Traditional power spectrum measures frequency content of entire time series.
- Wavelet decomposition is local in time.
	- Reveals changes in the spectrum over time without having to identify distinct temporal segments yourself.
	- \blacksquare Nice intro to wavelet analysis of time series: Torrence and Compo (1998) "A Practical Guide to Wavelet Analysis" Bulletin of the American Meteorological Society **79**, 61–78
	- \exists **Q** packages for wavelet analysis of time series (e.g., [WaveletComp,](http://www.hs-stat.com/WaveletComp/) [wavelets\)](https://www.rdocumentation.org/packages/wavelets/versions/0.3-0), and at least one [book on wavelet](http://www.springer.com/gp/book/9780387759609) [methods in](http://www.springer.com/gp/book/9780387759609) \mathbb{R}

Wavelet Spectrum of Monthly Measles in New York City

Krylova & Earn 2013, J. R. Soc. Interface **10**, 20130098

Wavelet Spectrum of Weekly Measles in New York City Figure 3. Estimates of the angles transmission, from 1904 to 1965, based on 9-year time windows around the window

 $\overline{3}$. The measuremeasles incidence data after mass vaccination was in full force $\overline{3}$

Figure 5. Observed measles dynamics in NYC from 1891 to 1984. (a) Square root of measles case reports, normalized by total concurrent population. (b) Colour depth plot of a continuous wavelet transform of the square root of normalized observed NYC measles cases (colour warmth scales with spectral power and 95% significance contours are shown in black). Shaded regions in the upper left and right indicate the cone of influence.

Hempel & Earn 2015, J. R. Soc. Interface 12, 20150024

[Epidemic Data and Time Series Tools](#page-1-0) [Wavelets](#page-72-0) 76/90

Wavelet Spectrum of Weekly Smallpox in London

Krylova & Earn 2020, PLoS Biology 18(12):e3000506

Statistical Modelling of Time Series

Instructor: David Earn [Mathematics 4MB3/6MB3 Mathematical Biology](#page-0-0)

Statistical Modelling of Time Series

- **Iomagine time series** $\{X_t\}$ is generated by random processes.
- Simplest case: X_t (number of cases at time t) is simply a random variable with a known distribution,

$$
X_t = \mu + Z_t \tag{*}
$$

where $\mu =$ time average number of cases and $\{Z_t\}$ = sequence of random variables with zero mean.

- **Night be a reasonable model for importation of new,** infectious individuals into a focal community.
- Bad model for epidemics: ignores transmission from one individual to another.
	- **There must be a correlation between the number of individuals** in the focal community who are infected now and the number who will be infected in the near future.

Statistical Modelling of Time Series: AR and MA

- So, imagine that that successive data points in $\{X_t\}$ are correlated.
- For example, perhaps the data are generated by an autoregressive (AR) process:

 $X_t - \mu = \alpha_1(X_{t-1} - \mu) + \alpha_2(X_{t-2} - \mu) + \cdots + \alpha_p(X_{t-p} - \mu) + Z_t,$

where the α_i are constants that determine the degree of correlation along the time series.

Alternatively, the data might be generated by a *moving* average (MA) process:

$$
X_t - \mu = \beta_0 Z_t + \beta_1 Z_{t-1} + \cdots + \beta_q Z_{t-q},
$$

where the β_i are constants that define a weighted average.

Statistical Modelling of Time Series: ARMA

More generally, the data might be generated by an autoregressive moving average "ARMA(p*,* q)" process:

$$
X_t - \mu = \alpha_1 (X_{t-1} - \mu) + \alpha_2 (X_{t-2} - \mu) + \cdots + \alpha_p (X_{t-p} - \mu)
$$

+ $\beta_0 Z_t + \beta_1 Z_{t-1} + \cdots + \beta_q Z_{t-q}$.

Statistical Modelling of Time Series: ARIMA

Finally, an *autoregressive integrated moving average* " $ARIMA(p, d, q)$ " model includes weighted differences of the time series:

$$
X_{t} - \mu = \alpha_{1}(X_{t-1} - \mu) + \alpha_{2}(X_{t-2} - \mu) + \cdots + \alpha_{p}(X_{t-p} - \mu)
$$

+ $\gamma_{1}(X_{t-1} - X_{t-2}) + \gamma_{2}(X_{t-2} - X_{t-3}) + \cdots$
+ $\beta_{0}Z_{t} + \beta_{1}Z_{t-1} + \cdots + \beta_{q}Z_{t-q}.$

- The "I" in ARIMA refers to the original time series X_t , which is an "integrated" version of the differenced time series.
- ■ Technically, an ARIMA model is just an ARMA model with differently labelled coefficients, but explicit differences are often helpful conceptually (e.g., they can "stationarize" a time series).

What kind of process generated our data?

- How can we tell if our data were generated by such a process? Can we identify an AR(p), MA(q) or ARMA(p*,* q) process?
- Compare time plots of these processes with time plot of our data? (Comparison by eye often challenging/unreliable.)
- Compare autocorrelation functions (correlograms) of these processes with correlogram of our data? (Better.)
- Compare power spectra (periodograms) of these processes with periodogram of our data? (Even better.)
- **Compare wavelet spectra of these processes with wavelet** spectrum of our data? (Better yet.)

Statistical Modelling of Time Series: ARMA fitting

- **E** Looking at the power spectra of ARMA models would be instructive.
- But is there a better approach to discovering if an ARMA model could explain our data?
- Find the *best fit* ARMA parameters by minimizing the residual sum of squares. e.g., for an AR model, minimize:

$$
S = \sum_{t=p+1}^{N} [(x_t - \mu) - \alpha_1 (x_{t-1} - \mu) - \cdots - \alpha_p (x_{t-p} - \mu)]^2.
$$

- **Nore generally, we can find the best fit parameters of an** ARIMA(p*,* d*,* q) model
	- Non-trivial, but there are standard methods
- Compare models with [Akaike Information Criterion \(AIC\),](https://en.wikipedia.org/wiki/Akaike_information_criterion) which penalizes models that have more parameters
	- See Earn (2009) review article for more discussion of this.

Time series tools discussed so far. . .

Statistical description of time series: [time plot,](#page-46-0) [moving average,](#page-48-0) [correlation coefficient,](#page-52-0) [autocorrelation,](#page-54-0) [correlogram,](#page-56-0) [power spectral density \(PSD\),](#page-59-0) [periodogram,](#page-60-0) [wavelet spectrum](#page-72-1)

Time series models: [AR,](#page-78-0) [MA,](#page-78-1) [ARMA,](#page-79-0) [ARIMA](#page-80-0)

Statistical Modelling of Time Series

- Simulate any $ARIMA(p, d, q)$ model with $\text{arima}.\text{sim}()$
- Fit an AR model to a time series with $ar()$
- Fit an ARIMA model to a time series with $arima()$
- **Alternatively, there are specialized time series modelling** packages.

ARMA Example (50 years of weekly data)

my.model <- **list**(ar=**c**(1,-0.5,0.5,-0.25),ma=**c**(-0.25,0.5)) my.sim <- **arima.sim**(n=52*50,model=my.model,sd=0.1) **plot**(my.sim,main="ARMA Example",ylab="",xaxs="i")

ARMA Example

Time

ARMA Example (ACF and PSD up to 10 year lag)

Statistical Modelling of Time Series: Forecasting

- Once we have a fitted model, we can then use it to *forecast* future observations
- I Validate this procedure by using part of the data to fit the model and then forecast the remainder of the data (*cf.* [cross-validation\)](https://en.wikipedia.org/wiki/Cross-validation_(statistics))
- How successful is this likely to be for an infectious disease time series?
	- Conceivably good for [chicken pox in NYC.](#page-29-0)
	- **Example 1** Less likely to be good for [measles.](#page-27-0).. at least for the main patterns. . .
	- One of the project options is to look at this more carefully.

Statistical Modelling of Time Series: Limitations

- If might be best to remove mean, trend and seasonality before fitting an [ARMA](#page-79-0) model
	- But this means we will remove the aspects of the data about which we care most!
- The fitted parameters of an ARMA model have no obvious biological meaning
	- The model completely ignores any understanding we have of infectious disease transmission
- Statistical models use the time series itself to parameterize an ARMA (or more general) process
	- If would be better to have a model that we can parameterize from independently collected data and then see if that model can explain the observed time series

Mechanistic Mathematical Modelling

- \blacksquare SIR and all that.
- \blacksquare Takes into account transmission process...
- So why did we just spend time talking about statistical modelling of time series?
	- **Important to be familiar with time series models that are in** common use.
	- \blacksquare Helps us appreciate the value of mechanistic modelling.
	- Some processes that affect disease dynamics might be better modelled as [ARMA](#page-79-0) or similar processes.
		- Weather (e.g., perhaps model $\beta = \beta(t)$ as an ARMA process)
		- **Immigration**
	- Ruling out an ARMA model (or at least one with a modest number of parameters) is a step towards finding a good model.
	- A combination of mechanistic and time series models could be useful.