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3 Epidemic Data and Time Series Tools

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Announcements

Next week’s lecture will be recorded in advance and posted on
the Echo 360 page for this course.

Live Q&A, either in last hour of scheduled class or at a
mutually convenient time.

Assignments:
Assignment 1 due 23 Sep 2024 (next Monday)
Assignment 2 due 7 Oct 2024
(good to work on before class on 1 Oct 2024)

Class on 1 Oct 2024 will be given by Mikael Jagan
(install epigrowthfit before that class)
Lecture on 8 Oct 2024 will pre-recorded and posted

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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P&I Mortality, Philadelphia, 1918
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SARS in 2003 (Worldwide)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SARS in 2003 (Toronto)

N = 249 (of 250 reported)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Some SARS Facts

High case fatality
1918 flu < 3%
SARS > 10%

Long hospital stays
Mean time from admission to discharge or death:
∼ 25 days in Hong Kong

8098 probable cases, 774 deaths

How bad would it have been if it had not been controlled?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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COVID (ancestral) hospitalization and survival in OntarioPapst et al. BMC Public Health          (2021) 21:706 Page 6 of 9

Fig. 4 Age-dependent COVID-19 hospitalization probability for known SARS-CoV-2 infection (panel a) and survival probability for hospitalized
patients (panel b) in Ontario. We give age-by-age estimates of each probability (points; 95% exact binomial confidence intervals given by vertical
lines), where point area is proportional to age-specific sample size. We additionally provide more precise estimates of these probabilities under
stricter assumptions, modelling the hospitalization probability using a generalized additive model and the survival probability using a generalized
linear model (curves; 95% confidence bands given by shaded regions). See “Methods” section for details

likely to transmit the virus are especially effective when
the vaccine has high efficacy (in terms of reducing suscep-
tibility to infection) [48], which is true of several leading
COVID-19 vaccines [49–52].
The age-dependent probabilities of hospitalization

given KI (Fig. 4a) are based on resolved known infections,
and so they depend on how widely SARS-CoV-2 testing
has been conducted. Throughout the period covering a
large portion of the CCM data, testing guidelines selected
for sufficiently symptomatic individuals [53]. These guide-
lines were not expanded to include asymptomatic individ-
uals from the general public until 29 May 2020 [54] and
were rolled back on 24 September 2020 in an effort to pre-
serve limited testing resources amid a surge in KIs [55]. As
a result, untargeted asymptomatic testing was offered only
in the summer, when prevalence was relatively low, which
represents a small proportion of the data. Moreover, indi-
viduals may not be prompted to get tested in the absence
of symptoms unless they are included in a contact tracing
investigation. The probability of hospitalization given KI
therefore likely overestimates the underlying probability
of hospitalization given infection, whether known or not.
Our survival probability estimates for hospitalized indi-

viduals (Fig. 4b) are not affected by the same detection
biases present in KI data. Patients admitted to hospital
are tested for SARS-CoV-2 as part of infection control
protocols, and thus infection detection in hospitalized
individuals is not influenced by testing guidelines for the
general population. Our survival probability estimates do,
however, represent an upper bound with respect to the

current standard of care and viral variant. In the absence
of significant innovation in COVID-19 treatment or viral
evolution to lower disease severity, we expect survival
probabilities would decrease if ICUs or hospitals were to
reach maximum capacity.

Limitations
Age is a simple and accessible proxy for risk factors,
including existing comorbidities that may affect COVID-
19 outcomes, which on average scale with age. This study
did not explicitly account for comorbidities and other fac-
tors that could correlate with the severity of COVID-19
outcomes.
In general, KIs underestimate the true prevalence of

SARS-CoV-2 infection for a variety of reasons, including
test availability, ease of testing, test accuracy, and difficul-
ties in detecting asymptomatic individuals. The majority
of KIs captured in the data analysed in this study occurred
when testing guidelines were selecting for sufficiently
symptomatic individuals, and so asymptomatic and mild
infections are likely underrepresented.
This study is specific to the Ontario SARS-CoV-2 epi-

demic, though the results have implications for COVID-
19 outbreaks all over the world. Contact patterns in
Ontario have changed over the course of the pandemic
due to the province’s continuing effort to control COVID-
19 spread while also supporting the economy. Observed
patterns in the age distributions of KIs and deaths may
change as the age-specific contact structure and contact
rates continue to change.

Papst et al (2021), BMC Public Health, 21:706

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The Black Death in London, England, 1348–1349
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Mortality Bills are typically handwritten

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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But handwriting is usually very clear

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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But handwriting is usually very clear

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The Great Plague of London, 1665
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The Great Plague of London, 1665
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Plague of 1593
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Plague of 1603
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Plague of 1625
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Weekly Deaths from Plague in London, 1592–1666
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Weekly Plague in London, 1640–1648
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Some Plague Facts

Plague epidemics recorded from Roman times to early 1900s.
≳ 1/3 Europe’s population died in “Black Death” of 1348

∼ 300 years for the population to reach the same level.
Recently (2011) established (at McMaster!) that the
pathogen that caused The Black Death was Yersinia pestis

[Bos et al. 2011, Nature 478, 506–510]

More recently (2014) established (again at McMaster!) that
the pathogen that caused The Plague of Justinian (541–543
AD) was Yersinia pestis

[Wagner et al. 2014, Lancet Infectious Diseases 14, 319–326]

Y. pestis still a concern?
Yes: Rodent reservoir, antibiotic-resistant strains, bioterrorism
Spatial data for any plagues? Yes, for London in 1665. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data and Time Series Tools Spatial Data 23/90

Visualization of spatial structure of Great Plague

GIS encoding of parish boundaries
Overlay parish boundaries on more modern map for reference
Colour parishes as they become infected
Is there evidence for spatial spread or was the spatial pattern
random?
DE low-tech animation. . .
CBC high-tech animation. . .

The Nature of Things, 21 August 2014.
http://www.cbc.ca/natureofthings/episodes/
secrets-in-the-bones-the-hunt-for-the-black-death-killer

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer
http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer
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Visualization of entire course of the Great Plague

What happenned after initial spatial spread?

Visualize full spatial epidemic structure

Show magnitude of epidemic in each parish with cylinder.

Epidemic Visualization (EpiVis) software by Junling Ma.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data and Time Series Tools Influenza; Childhood Infectious Diseases 25/90

P&I mortality in U.S.A., 1910–1998

Earn, Dushoff & Levin 2002, Trends in Ecology and Evolution 17, 334–340

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Influenza Incidence Patterns (lab confirmed)

Geographic Patterns Types and Subtypes

Earn, Dushoff & Levin 2002, Trends in Ecology and Evolution 17, 334–340

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Influenza Evolution

Molecular
phylogenetic
reconstruction of
influenza A/H3N2
evolution,
1985–1996
(Fitch et al. 1997)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data and Time Series Tools Influenza; Childhood Infectious Diseases 29/90

Mumps in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Chicken Pox in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Childhood diseases in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in Ontario, 1904–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Chicken Pox in Ontario, 1924–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Rubella in Ontario, 1924–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Whooping Cough in Ontario, 1904–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Childhood diseases in Ontario, 1904–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Ontario Disease Notification Data

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Dominion Bureau of Statistics Disease Notification Data

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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All Historical Canadian Infectious Disease Data

https://canmod.net/digitization/

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://canmod.net/digitization/


Epidemic Data and Time Series Tools Recurrent epidemics of childhood infections 40/90

Recurrent epidemics of childhood infections

Childhood diseases in New York City, 1928–1972

Childhood diseases in Ontario, 1904–1989

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data and Time Series Tools Recurrent epidemics of childhood infections 41/90

Measles incidence in England and Wales, 1944–1995
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles incidence in England and Wales, 1944–1995
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Why study measles epidemics?

∼ 140, 000 annual deaths
from measles
A major cause of
vaccine-preventable deaths.
Potential impact in
developed countries during
vaccine scares (e.g., MMR
scare in UK in 1990s).

Understand past patterns
Predict future patterns
Manipulate future patterns
Develop vaccination strategy
that can. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://www.who.int/news-room/fact-sheets/detail/measles
https://www.who.int/news-room/fact-sheets/detail/measles


Epidemic Data and Time Series Tools Recurrent epidemics of childhood infections 44/90

Other reasons to model infectious disease epidemics

Mathematical models make hypotheses and inferences precise
Give better advice to policymakers
Make better predictions

Host-pathogen dynamics are important aspects of ecosystem
dynamics

Infectious disease models more likely to be successful than
predator-prey models

Excellent data for human infectious diseases
Models can be tested!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Modelling population dynamics of childhood infections

The basic SIR model cannot explain recurrent epidemics.

What should we do?. . . The usual options:
1 Get depressed, drop the course.
2 Keep developing models until we can explain recurrent

epidemics.

First, let’s talk about tools that allow us to make our
questions about time series data more precise.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Epidemic Data
Analysis

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Time Plots of Temporal Epidemic Patterns
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Time Plots of Transformed Data
Reveal unobvious aspects of time series
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Times Plots of Smoothed Data

Reveal trends clouded by noise or seasonality

Moving Average:

xt → 1
2a + 1

a∑
i=−a

xt+i

Replace original data points xt with averages of nearby points.

Linear filter:
xt →

∞∑
i=−∞

λixt+i

Generalization of moving average.
Weights λi can be nonlinear functions of i .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Times Plots of Smoothed Data
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Times Plots of Smoothed Data

1950 1960 1970 1980 1990

2000

4000

6000

8000

10000

12000

Raw cases per week

1950 1960 1970 1980 1990

2000

4000

6000

8000

10000
11 week moving average

1950 1960 1970 1980 1990

2000

4000

6000

8000 17 week moving average

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Times Plots of Smoothed Data
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Correlation

Recurrent epidemics =⇒ number of cases now is correlated
with number of cases in the past and the future.

Given N pairs of observations of different quantities,
{(xi , yi) : i = 1, . . . , N}, the correlation coefficient is defined
to be

r =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2∑N

i=1(yi − ȳ)2

where x̄ and ȳ are the means of {xi} and {yi}, respectively.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Correlation

Properties of the correlation coefficient:
−1 ≤ r ≤ 1 (Proof? Cauchy-Schwarz inequality)
r = 1 ⇐⇒ all points lie on a line with positive slope
(“complete positive correlation”)
r = −1 ⇐⇒ all points lie on a line with negative slope
(“complete negative correlation”)
r ≃ 0 =⇒ “uncorrelated”
Interpretation: r2 is the proportion of the variance in y
explained by a linear function of x .

Derivations and discussions:
MathWorld on r2, Wikipedia on r2

Wikipedia on general coefficient of determination

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
http://mathworld.wolfram.com/CorrelationCoefficient.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Coefficient_of_determination
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Autocorrelation

Given a single sequence of observations {xt : t = 1, . . . , N},
we can compute the correlation of each observation with the
observation k time steps in the future.

Thus, we consider the pairs of observations
{(xt , xk+t) : t = 1, . . . , N − k} and define the autocorrelation
coefficient at lag k to be

rk =
∑N−k

t=1 (xt − x̄1,N−k)(xk+t − x̄k+1,N)√∑N−k
t=1 (xt − x̄1,N−k)2∑N−k

t=1 (xk+t − x̄k+1,N)2

where x̄1,N−k and x̄k+1,N are the means of first and last N − k
observations, respectively.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Autocorrelation

If number of observations N is large and lag k ≪ N then

rk ≃
∑N−k

t=1 (xt − x̄)(xk+t − x̄)∑N
t=1(xt − x̄)2

Approximation of rk is worse for larger lags k

Plot of autocorrelation rk as a function of lag k is called the
correlogram.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Correlogram
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Peaks in correlogram =⇒ periodicities in original time series.
Correlograms of temporal segments are often informative.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Correlogram: exact vs. approximate rk
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Spectral Density

Can we compute the dominant periods in the time series?
(Rather than estimating them by eye from the correlogram.)

Express the time series as a Fourier series:

xt = a0 +

(N/2)−1∑
p=1

(
ap cos ωpt + bp sin ωpt

)+ aN/2 cos πt ,

where ωp = 2πp/N.

Compute the Fourier coefficients {ap}, {bp} by taking inner
products with cos ωpt and sin ωpt.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Fourier_series
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Spectral Density

Fourier coefficients of xt are:

a0 = x̄ = 1
N
∑

t
xt ,

ap = 2
N
∑

t
xt cos ωpt , bp = 2

N
∑

t
xt sin ωpt ,

aN/2 = 1
N
∑

t
(−1)txt ,

where sum is over observation times.

Estimated power spectral density (PSD) at frequency ωp is⋆:

I(ωp) = N
4π

(
a2

p + b2
p
)

⋆The normalization by N/4π is the convention chosen by Chatfield (2004, “Analysis of Time Series: An
Introduction”). Other normalization conventions are also in common use.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Spectral_density
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
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Spectral Density

There are many different ways to express the power spectral
density (aka power spectrum).

Most common/useful equivalence is that the power spectrum
is the discrete Fourier transform of the correlogram:

I(ωp) = 1
π

(
r0 + 2

N−1∑
k=1

rk cos ωpk
)

Plot of estimated power spectrum as a function of frequency
ωp is called the frequency periodogram or just the
periodogram.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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Spectral Density
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Spectral Density
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density Properties

Periodogram is discrete Fourier transform of correlogram

Same information in correlogram and periodogram

Periodogram usually easier to interpret

In , calculate power spectrum with spectrum()

The power spectrum I(ωp) partitions the variance in the time
series with respect to frequency ωp.

Parseval’s theorem implies 1
N
∑

t(xt − x̄)2 = 1
2πN

∑
p>0 I(ωp).

But 1
N
∑

t(xt − x̄)2 = Var{xt}, hence I(ωp)/(2πN) is the
proportion of the variance in the time series associated with
period 2π/ωp. [For details, see Chatfield (2004).]

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Parseval's_theorem
https://en.wikipedia.org/wiki/Variance
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
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Basic Time Series Analysis of Epidemic Data
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More on
Time Series

Tools
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Spectral Density of Temporal Segments

Pre-war measles
Post-war pre-vaccination measles
Vaccination era measles
Vaccination era measles until 1990

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Time series analysis functions

has built-in tools for time series analysis:

Time plot: plot() etc.
Linear filter (e.g., moving average): filter()
Correlogram (auto-correlation function): acf()
Periodogram (power spectrum): spectrum()

You will use all of these functions in Assignment 4.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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More sophisticated spectral method

Traditional power spectrum measures frequency content of
entire time series.

Wavelet decomposition is local in time.
Reveals changes in the spectrum over time without having to
identify distinct temporal segments yourself.
Nice intro to wavelet analysis of time series:
Torrence and Compo (1998) “A Practical Guide to Wavelet
Analysis” Bulletin of the American Meteorological Society 79,
61–78

∃ packages for wavelet analysis of time series (e.g.,
WaveletComp, wavelets), and at least one book on wavelet
methods in

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://www.hs-stat.com/WaveletComp/
https://www.rdocumentation.org/packages/wavelets/versions/0.3-0
http://www.springer.com/gp/book/9780387759609
http://www.springer.com/gp/book/9780387759609
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Wavelet Spectrum of Monthly Measles in New York City

Krylova & Earn 2013, J. R. Soc. Interface 10, 20130098

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Wavelet Spectrum of Weekly Measles in New York City

We estimate a only from 1900 to 1970. We avoid pre-1900

data due to the previously mentioned change in reporting

area in 1898 (§2), and lack of data outside Manhattan. We do

not produce estimates beyond 1970 because case sampling is

worse, resulting in poor and unreliable reconstruction. Since

we use 9-year windows to produce estimates, and data from

1900 to 1970, we produce a estimates for the years 1904–1965.

The temporal progressions of both our predictor parameters

(R0,eff and a) are shown in a figure in §3.3.3 for the full

time series.

3.3. Transition analysis
Previous work has shown that analysis of the deterministic SIR

model (3.1) is sufficient to predict changes in the frequency

structure of observed temporal patterns of infectious disease

incidence [2,4,5,27] or mortality [6] observed over many

decades. The methodology has been described in detail pre-

viously [27, §2.2]. Here we briefly summarize our analysis as

we apply it to the newly extended NYC measles times series,

emphasizing the aspects of our approach that differ from

previous transition analyses.

3.3.1. Features of the data that we would like to explain
Figure 2 presented all the data used for our analyses. Figure 5

displays the normalized NYC measles time series again, but in

two different ways that highlight the changes in frequency struc-

ture that we seek to understand. The top panel of figure 5 shows

weekly normalized measles on a square root scale, suppressing
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Figure 4. Estimates of the amplitude (a) of seasonality of measles transmission, from 1904 to 1965, based on 9-year time windows around each year (details in
§3.2.2). The measles incidence data after 1970 (after mass vaccination was in full force) is much noisier and estimating a is much more difficult. We assume a

remained roughly constant after the final point shown in the graph. (Online version in colour.)

0.01

0.02

0.25

0.5

1

2

4

8

1900 1910 1920 1930 1940 1950 1960 1970 1980

0

0.2

0.4

0.6

0.8

1.0

I/
N

year

pe
ri

od
 (

ye
ar

s)

Figure 5. Observed measles dynamics in NYC from 1891 to 1984. (a) Square root of measles case reports, normalized by total concurrent population. (b) Colour 
depth plot of a continuous wavelet transform of the square root of normalized observed NYC measles cases (colour warmth scales with spectral power and 95%
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Wavelet Spectrum of Weekly Smallpox in London

Krylova & Earn 2020, PLoS Biology 18(12):e3000506

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical
Modelling

of Time Series
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical Modelling of Time Series

Imagine time series {Xt} is generated by random processes.
Simplest case: Xt (number of cases at time t) is simply a
random variable with a known distribution,

Xt = µ + Zt (∗)

where µ = time average number of cases
and {Zt} = sequence of random variables with zero mean.
Might be a reasonable model for importation of new,
infectious individuals into a focal community.
Bad model for epidemics: ignores transmission from one
individual to another.

There must be a correlation between the number of individuals
in the focal community who are infected now and the number
who will be infected in the near future.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical Modelling of Time Series: AR and MA

So, imagine that that successive data points in {Xt} are
correlated.
For example, perhaps the data are generated by an
autoregressive (AR) process:

Xt−µ = α1(Xt−1 − µ) + α2(Xt−2 − µ) + · · · + αp(Xt−p − µ)+Zt ,

where the αi are constants that determine the degree of
correlation along the time series.
Alternatively, the data might be generated by a moving
average (MA) process:

Xt − µ = β0Zt + β1Zt−1 + · · · + βqZt−q ,

where the βi are constants that define a weighted average.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical Modelling of Time Series: ARMA

More generally, the data might be generated by an
autoregressive moving average “ARMA(p, q)” process:

Xt − µ = α1(Xt−1 − µ) + α2(Xt−2 − µ) + · · · + αp(Xt−p − µ)
+ β0Zt + β1Zt−1 + · · · + βqZt−q .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical Modelling of Time Series: ARIMA

Finally, an autoregressive integrated moving average
“ARIMA(p, d , q)” model includes weighted differences of the
time series:

Xt − µ = α1(Xt−1 − µ) + α2(Xt−2 − µ) + · · · + αp(Xt−p − µ)
+ γ1(Xt−1 − Xt−2) + γ2(Xt−2 − Xt−3) + · · ·
+ β0Zt + β1Zt−1 + · · · + βqZt−q .

The “I” in ARIMA refers to the original time series Xt , which
is an “integrated” version of the differenced time series.
Technically, an ARIMA model is just an ARMA model with
differently labelled coefficients, but explicit differences are
often helpful conceptually (e.g., they can “stationarize” a time
series).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What kind of process generated our data?

How can we tell if our data were generated by such a process?
Can we identify an AR(p), MA(q) or ARMA(p, q) process?

Compare time plots of these processes with time plot of our
data? (Comparison by eye often challenging/unreliable.)
Compare autocorrelation functions (correlograms) of these
processes with correlogram of our data? (Better.)
Compare power spectra (periodograms) of these processes
with periodogram of our data? (Even better.)
Compare wavelet spectra of these processes with wavelet
spectrum of our data? (Better yet.)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical Modelling of Time Series: ARMA fitting

Looking at the power spectra of ARMA models would be
instructive.
But is there a better approach to discovering if an ARMA
model could explain our data?
Find the best fit ARMA parameters by minimizing the residual
sum of squares. e.g., for an AR model, minimize:

S =
N∑

t=p+1

[
(xt − µ) − α1(xt−1 − µ) − · · · − αp(xt−p − µ)

]2
.

More generally, we can find the best fit parameters of an
ARIMA(p, d , q) model

Non-trivial, but there are standard methods
Compare models with Akaike Information Criterion (AIC),
which penalizes models that have more parameters

See Earn (2009) review article for more discussion of this.
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://davidearn.mcmaster.ca/publications/Earn2009
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Time series tools discussed so far. . .

Statistical description of time series:
time plot, moving average, correlation coefficient,
autocorrelation, correlogram, power spectral density (PSD),
periodogram, wavelet spectrum

Time series models:
AR, MA, ARMA, ARIMA

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Statistical Modelling of Time Series

How to do it in . . .

Simulate any ARIMA(p, d , q) model with arima.sim()

Fit an AR model to a time series with ar()

Fit an ARIMA model to a time series with arima()

Alternatively, there are specialized time series modelling
packages.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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ARMA Example (50 years of weekly data)

my.model <- list(ar=c(1,-0.5,0.5,-0.25),ma=c(-0.25,0.5))
my.sim <- arima.sim(n=52*50,model=my.model,sd=0.1)
plot(my.sim,main="ARMA Example",ylab="",xaxs="i")
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ARMA Example (ACF and PSD up to 10 year lag)
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Statistical Modelling of Time Series: Forecasting

Once we have a fitted model, we can then use it to forecast
future observations
Validate this procedure by using part of the data to fit the
model and then forecast the remainder of the data (cf.
cross-validation)

How successful is this likely to be for an infectious disease
time series?

Conceivably good for chicken pox in NYC.
Less likely to be good for measles. . . at least for the main
patterns. . .
One of the project options is to look at this more carefully.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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Statistical Modelling of Time Series: Limitations

It might be best to remove mean, trend and seasonality before
fitting an ARMA model

But this means we will remove the aspects of the data about
which we care most!

The fitted parameters of an ARMA model have no obvious
biological meaning

The model completely ignores any understanding we have of
infectious disease transmission

Statistical models use the time series itself to parameterize an
ARMA (or more general) process

It would be better to have a model that we can parameterize
from independently collected data and then see if that model
can explain the observed time series

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Mechanistic Mathematical Modelling

SIR and all that. . .
Takes into account transmission process. . .

So why did we just spend time talking about statistical
modelling of time series?

Important to be familiar with time series models that are in
common use.
Helps us appreciate the value of mechanistic modelling.
Some processes that affect disease dynamics might be better
modelled as ARMA or similar processes.

Weather (e.g., perhaps model β = β(t) as an ARMA process)
Immigration

Ruling out an ARMA model (or at least one with a modest
number of parameters) is a step towards finding a good model.
A combination of mechanistic and time series models could be
useful.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology


