3 Epidemic Data

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 3
Epidemic Data
Monday 23 September 2019

Announcements

■ You should have received an invitation to do the contributions survey for Assignment 1. Please do it TODAY (e.g., during the mid-class break).

- Don't stress about the ratings about each other's contributions. The issue is whether some group members did not pull their weight. If somebody didn't try and others had to pick up the slack, that person should be penalized. I will not penalize somebody because they tried but felt they didn't contribute as much to the final document as they could have. Do try to even out the work across the assignments.
- Make sure everyone in your group gets a chance to be in control of the ${ }^{A} T_{E X}$ for one assignment.

More Announcements!

- Assignment 2:

Due Monday 7 October 2019 by e-mail before class.
■ Midterm test:
■ Date: Monday 4 November 2019

- Time: 11:30am-1:30pm
- Location: in class, ETB-237

Attendance

Who is here?

P\&l Mortality, Philadelphia, 1918

P\&I Deaths

SARS in 2003 (Worldwide)

Probable cases of SARS by week of onset

*This graph does not include 2,527 probable cases of SARS (2,521 from Beijing, China), for whom no dates of onset are currently available.

SARS in 2003 (Toronto)

Travel / Voyageur $(\mathrm{N}=5)$	םHealth Care Setting / Milieu de soins de santé ($\mathrm{N}=191$)
\square Household / Domicile $(\mathrm{N}=47)$	■Other / Autres** $(\mathrm{N}=7)$

$$
N=249 \text { (of } 250 \text { reported) }
$$

Some SARS Facts

■ High case fatality

- 1918 flu $<3 \%$
- SARS > 10%

■ Long hospital stays

- Mean time from admission to discharge or death:
~ 25 days in Hong Kong
■ 8098 probable cases, 774 deaths
■ How bad would it have been if it had not been controlled?

The Black Death in London, England, 1348-1349

London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn

London Bill of Mortality, 26 Sept to 3 Oct 1665

Mortality Bills are typically handwritten

But handwriting is usually very clear

LONNDN

St A Lban Woodftreet $\boldsymbol{A}_{\text {Alhallows Bark.- }}$ Alhallows Breadftrect

But handwriting is usually very clear

The Great Plague of London, 1665

The Great Plague of London, 1665

London Plague of 1593

London Plague of 1603

London Plague of 1625

Weekly Deaths from Plague in London, 1592-1666

Weekly Plague in London, 1640-1648

Some Plague Facts

■ Plague epidemics recorded from Roman times to early 1900s.
■ $\gtrsim 1 / 3$ Europe's population died in "Black Death" of 1348
■ ~ 300 years for the population to reach the same level.
■ Recently (2011) established (at McMaster!) that the pathogen that caused The Black Death was Yersinia pestis
[Bos et al. 2011, Nature 478, 506-510]
■ More recently (2014) established (again at McMaster!) that the pathogen that caused The Plague of Justinian (541-543 AD) was Yersinia pestis
[Wagner et al. 2014, Lancet Infectious Diseases 14, 319-326]
■ Y. pestis still a concern?
Yes: Rodent reservoir, antibiotic-resistant strains, bioterrorism
■ Spatial data for any plagues? Yes, for London in 1665...

Visualization of spatial structure of Great Plague

- GIS encoding of parish boundaries
- Overlay parish boundaries on more modern map for reference

■ Colour parishes as they become infected
■ Is there evidence for spatial spread or was the spatial pattern random?

■ DE low-tech animation...
■ CBC high-tech animation...

- The Nature of Things, 21 August 2014.

```
    http://www.cbc.ca/natureofthings/episodes/
    secrets-in-the-bones-the-hunt-for-the-black-death-killer
```


Please consider. . .

5 minute Student Respiratory IIIness Survey:
https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.
-Dr. Marek Smieja (Infectious Diseases)

Visualization of entire course of the Great Plague

■ What happenned after initial spatial spread?

- Visualize full spatial epidemic structure
- Show magnitude of epidemic in each parish with cylinder.
- Epidemic Visualization (EpiVis) software by Junling Ma.

P\&I mortality in U.S.A., 1910-1998

Earn, Dushoff \& Levin 2002, Trends in Ecology and Evolution 17, 334-340

Influenza Incidence Patterns (lab confirmed)

Geographic Patterns

Types and Subtypes

Influenza Evolution

Molecular phylogenetic reconstruction of influenza A/H3N2
evolution,
1985-1996
(Fitch et al. 1997)

Measles in New York City, 1928-1972

Monthly Cases

Mumps in New York City, 1928-1972

Monthly Cases

Chicken Pox in New York City, 1928-1972

Monthly Cases

Childhood diseases in New York City, 1928-1972

Measles in Ontario, 1904-1989

Monthly Cases

Chicken Pox in Ontario, 1924-1989

Monthly Cases

Rubella in Ontario, 1924-1989

Weekly Cases

Whooping Cough in Ontario, 1904-1989

Monthly Cases

Childhood diseases in Ontario, 1904-1989

Ontario Disease Notification Data

Dominion Bureau of Statistics Disease Notification Data

VITAL STATISTICS BRANCH－COMANNICABLE DISEASE SECTION

$\begin{gathered} \hline \text { WEEK } \\ \text { ENDING } \\ \hline \end{gathered}$	P．E．I．		N．S．		N．B．		QUE．		0 Nm ．		MAN．		SASK．	ALPA．	E．C．	CANADA
	W／1／	mT	w／s	の方	wh	4 m	W／s	m	W／s	mi	～18	川1	W\％゙ーブ	Whithi	Uss 207	Whmor
1clan 3			11										1			12
$2 \quad 12$			29										18			4%
319			37										32			69
$4 \quad 26$			75	122				68		181		36	13， 64	97	4	88.602
$5 F_{E B} 2$			12		1								13			66
6 ，			5										40			45
$7 \quad 16$			31										14			45
8.23			－ 2	50	1	2		267		202		48	4.111	116	1	71797
9 max，			2										21			23
$10 \quad 8$													9	，		9
$11 \quad 15$			31										II			14
$12 \quad 22$			60										34			94
$13 \quad 29$				61				144		140		52	1590	15	7	17，513
14 APA S			9										11			20
$15 \quad 12$			1										12			131
$16 \quad 19$			26		1								8			351
$17 \quad 26$				50	3	4		42		140		39	16．47	67	5	3.3594
18 may 3			26										2			28

Instructor：David Earn

Recurrent epidemics of childhood infections

- Childhood diseases in New York City, 1928-1972

■ Childhood diseases in Ontario, 1904-1989

Measles incidence in England and Wales, 1944-1995

Weekly Cases

Measles incidence in England and Wales, 1944-1995

Sqrt(Weekly Cases)

Why study measles epidemics?

■ In 2017, ~ 110, 000 deaths from measles

- A major cause of vaccine-preventable deaths.
- Potential impact in developed countries during vaccine scares (e.g., MMR scare in UK in 1990s).

■ Understand past patterns

- Predict future patterns
- Manipulate future patterns

- Develop vaccination strategy that can...

Other reasons to model infectious disease epidemics

■ Mathematical models make hypotheses and inferences precise
■ Give better advice to policymakers

- Make better predictions

■ Host-pathogen dynamics are important aspects of ecosystem dynamics

■ Infectious disease models more likely to be successful than predator-prey models

■ Excellent data for human infectious diseases
■ Models can be tested!

Modelling population dynamics of childhood infections

- The basic SIR model cannot explain recurrent epidemics.

■ What should we do?... The usual options:
1 Get depressed, drop the course.
2 Keep developing models until we can explain recurrent epidemics.

■ First, let's talk about tools that allow us to make our questions about time series data more precise.

Please consider. . .

5 minute Student Respiratory IIIness Survey:
https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.
-Dr. Marek Smieja (Infectious Diseases)

Epidemic Data Analysis

Time Plots of Temporal Epidemic Patterns

1918 P\&I

Weekly Measles in England and Wales

Time Plots of Transformed Data

- Reveal unobvious aspects of time series

Times Plots of Smoothed Data

■ Reveal trends clouded by noise or seasonality

- Moving Average:

$$
x_{t} \rightarrow \frac{1}{2 a+1} \sum_{i=-a}^{a} x_{t+i}
$$

- Replace original data points x_{t} with averages of nearby points.
- Linear filter:

$$
x_{t} \rightarrow \sum_{i=-\infty}^{\infty} \lambda_{i} x_{t+i}
$$

- Generalization of moving average.
- Weights λ_{i} can be nonlinear functions of i.

Times Plots of Smoothed Data

Times Plots of Smoothed Data

Times Plots of Smoothed Data

Correlation

■ Recurrent epidemics \Longrightarrow number of cases now is correlated with number of cases in the past and the future.

- Given N pairs of observations of different quantities, $\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, N\right\}$, the correlation coefficient is defined to be

$$
r=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}}
$$

where \bar{x} and \bar{y} are the means of $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, respectively.

Correlation

Properties of the correlation coefficient:
■ $-1 \leq r \leq 1 \quad$ (Proof? Cauchy-Schwarz inequality)
■ $r=1 \Longleftrightarrow$ all points lie on a line with positive slope ("complete positive correlation")
■ $r=-1 \Longleftrightarrow$ all points lie on a line with negative slope ("complete negative correlation")

- $r \simeq 0 \Longrightarrow$ "uncorrelated"
- Interpretation: r^{2} is the proportion of the variance in y explained by a linear function of x.

Derivations and discussions:

- MathWorld on r^{2}, Wikipedia on r^{2}
- Wikipedia on general coefficient of determination

Autocorrelation

- Given a single sequence of observations $\left\{x_{t}: t=1, \ldots, N\right\}$, we can compute the correlation of each observation with the observation k time steps in the future.
- Thus, we consider the pairs of observations $\left\{\left(x_{t}, x_{k+t}\right): t=1, \ldots, N-k\right\}$ and define the autocorrelation coefficient at lag k to be

$$
r_{k}=\frac{\sum_{t=1}^{N-k}\left(x_{t}-\bar{x}_{1, N-k}\right)\left(x_{k+t}-\bar{x}_{k+1, N}\right)}{\sqrt{\sum_{t=1}^{N-k}\left(x_{t}-\bar{x}_{1, N-k}\right)^{2} \sum_{t=1}^{N-k}\left(x_{k+t}-\bar{x}_{k+1, N}\right)^{2}}}
$$

where $\bar{x}_{1, N-k}$ and $\bar{x}_{k+1, N}$ are the means of first and last $N-k$ observations, respectively.

Autocorrelation

■ If number of observations N is large and lag $k \ll N$ then

$$
r_{k} \simeq \frac{\sum_{t=1}^{N-k}\left(x_{t}-\bar{x}\right)\left(x_{k+t}-\bar{x}\right)}{\sum_{t=1}^{N}\left(x_{t}-\bar{x}\right)^{2}}
$$

■ Approximation of r_{k} is worse for larger lags k

■ Plot of autocorrelation r_{k} as a function of lag k is called the correlogram.

Correlogram

■ Peaks in correlogram \Longrightarrow periodicities in original time series.

- Correlograms of temporal segments are often informative.

Correlogram: exact vs. approximate r_{k}

Spectral Density

- Can we compute the dominant periods in the time series? (Rather than estimating them by eye from the correlogram.)
- Express the time series as a Fourier series:
$x_{t}=a_{0}+\left(\sum_{p=1}^{(N / 2)-1}\left(a_{p} \cos \omega_{p} t+b_{p} \sin \omega_{p} t\right)\right)+a_{N / 2} \cos \pi t$,
where $\omega_{p}=2 \pi p / N$.

■ Compute the Fourier coefficients $\left\{a_{p}\right\},\left\{b_{p}\right\}$ by taking inner products with $\cos \omega_{p} t$ and $\sin \omega_{p} t$.

Spectral Density

■ Fourier coefficients of x_{t} are:

$$
\begin{aligned}
a_{0} & =\bar{x}=\frac{1}{N} \sum_{t} x_{t}, \\
a_{p} & =\frac{2}{N} \sum_{t} x_{t} \cos \omega_{p} t, \quad b_{p}=\frac{2}{N} \sum_{t} x_{t} \sin \omega_{p} t, \\
a_{N / 2} & =\frac{1}{N} \sum_{t}(-1)^{t} x_{t},
\end{aligned}
$$

where sum is over observation times.

■ Estimated power spectral density (PSD) at frequency ω_{p} is*:

$$
I\left(\omega_{p}\right)=\frac{N}{4 \pi}\left(a_{p}^{2}+b_{p}^{2}\right)
$$

*The normalization by $N / 4 \pi$ is the convention chosen by Chatfield (2004, "Analysis of Time Series: An Introduction"). Other normalization conventions are also in common use.

Please consider. . .

5 minute Student Respiratory IIIness Survey:
https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.
-Dr. Marek Smieja (Infectious Diseases)

Spectral Density

■ There are many different ways to express the power spectral density (aka power spectrum).

■ Most common/useful equivalence is that the power spectrum is the discrete Fourier transform of the correlogram:

$$
I\left(\omega_{p}\right)=\frac{1}{\pi}\left(r_{0}+2 \sum_{k=1}^{N-1} r_{k} \cos \omega_{p} k\right)
$$

- Plot of estimated power spectrum as a function of frequency ω_{p} is called the frequency periodogram or just the periodogram.

Spectral Density

Spectral Density

Spectral Density of Temporal Segments

Spectral Density Properties

- Periodogram is discrete Fourier transform of correlogram
- Same information in correlogram and periodogram
- Periodogram usually easier to interpret

■ In \mathbb{R}, calculate power spectrum with spectrum ()

- The power spectrum $I\left(\omega_{p}\right)$ partitions the variance in the time series with respect to frequency ω_{p}.

■ Parseval's theorem implies $\frac{1}{N} \sum_{t}\left(x_{t}-\bar{x}\right)^{2}=\frac{1}{2 \pi N} \sum_{p>0} I\left(\omega_{p}\right)$. But $\frac{1}{N} \sum_{t}\left(x_{t}-\bar{x}\right)^{2}=\operatorname{Var}\left\{x_{t}\right\}$, hence $I\left(\omega_{p}\right) /(2 \pi N)$ is the proportion of the variance in the time series associated with period $2 \pi / \omega_{p}$.
[For details, see Chatfield (2004).]

Basic Time Series Analysis of Epidemic Data

