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Course information

Everyone should have received an e-mail yesterday (Sunday).
If not, e-mail earn@math.mcmaster.ca now from the e-mail
address that you use.

The course web page: http://ms.mcmaster.ca/earn/4MB3

Click on “Course information sheet”.
Download pdf or read online.
Let’s have a look now. . .

My office hour will be delayed by one hour today:
3:30–4:20pm.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

mailto:earn@math.mcmaster.ca?subject=Math%204MB3/6MB3:%20
http://ms.mcmaster.ca/earn/4MB3
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Special Mathematical Biology Seminar TODAY

Speaker: Robert Smith?
Affiliation: University of Ottawa
Title: “Unexpected Infection Spikes in a Model of Respiratory
Syncytial Virus Vaccination”
Where: HH-410
When: 2:30–3:30pm TODAY

Abstract: Respiratory Syncytial Virus (RSV) is an acute respiratory infection that infects millions of children and
infants worldwide. Recent research has shown promise for the development of a vaccine, with a range of vaccine
types now in clinical trials or preclinical development. We extend an existing mathematical model with seasonal
transmission to include vaccination. We model vaccination both as a continuous process, applying the vaccine
during pregnancy, and as a discrete one, using impulsive differential equations, applying pulse vaccination. We
develop conditions for the stability of the disease-free equilibrium and show that this equilibrium can be destabilized
under certain extreme conditions, even with 100% coverage using an (unrealistic) vaccine. Using impulsive
differential equations and introducing a new quantity, the impulsive reproduction number, we showed that
eradication could be achieved with 75% coverage, while 50% coverage resulted in low-level oscillations. A vaccine
that targets RSV infection has the potential to significantly reduce the overall prevalence of the disease, but
appropriate coverage is critical.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Attendance

Who is here?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Group formation

Most work in this course will be done in groups.

Form a group of 4 students (you and 3 others)
during the break TODAY.

Exactly one member of your group must e-mail the
instructor TODAY during the break:

Include “Math 4MB3” and your proposed group name in the
subject line.
Copy your message to all members of your proposed
group so I have everyone’s e-mail in the thread.

Note: Instructor may change groups based on survey results.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

mailto:earn@math.mcmaster.ca?subject=Math%204MB3/6MB3:%20***%20GROUP%20NAME%20HERE%20***%20
mailto:earn@math.mcmaster.ca?subject=Math%204MB3/6MB3:%20***%20GROUP%20NAME%20HERE%20***%20
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Online Surveys

You will be required to fill in online surveys during this course.
Doing so in a timely manner contributes to your participation mark.

The first online survey has been posted:
Go to the Surveys page on the course web site.
Follow the link for Background and Group formation Survey.
Complete the survey TODAY.
It should take only ∼ 5 minutes.
Note that surveys sometimes fail to save.

Type long answers into a file first and paste them into the
survey. Then you won’t get as frustrated if it fails to save.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://davidearn.github.io/math4mb/surveys.html
http://www.math.mcmaster.ca/earn/4MB3
https://surveys.mcmaster.ca/limesurvey/index.php/698494
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Software

ASAP, install the software discussed on the Software page on
the course web site:

LATEX

R

RStudio
XPPAUT
Emacs

Note: the Software page also contains some info about
spell-checking and counting words in LATEX documents.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://davidearn.github.io/math4mb/software.html
http://www.math.mcmaster.ca/earn/4MB3
https://davidearn.github.io/math4mb/software.html
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Epidemic
Modelling

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Pneumonia & Influenza Mortality, Philadelphia, 1918
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Modelling challenge

Develop a model that helps us understand the graph on the
previous slide, based on mechanisms of disease spread.

Only one variable is observed (P&I deaths per day) so
construct a model containing only one variable.
Think about how disease spreads and express your thoughts
with mathematical notation.
Derive a differential equation that models the process of
disease transmission.
Analyze the model and determine its strengths and
weaknesses/limitations.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Modelling Intro Constructing a model 12/72

Make (Biological) Assumptions Clear

1 Assume the disease is transmitted by contact between an
infected individual and a susceptible individual.

2 Assume the latent period (delay between being infected and
becoming infectious) is so short that it can be ignored
(technically assume it is zero).

3 Assume all members of the population are identical and
respond identically to the disease. In particular, all susceptible
individuals are equally susceptible and all infected individuals
are equally infectious.

4 Assume the population size is fixed during the epidemic, i.e.,
ignore births, migration, and deaths from causes other than
the disease, and count individuals who have died from the
disease as part of the population.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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About Assumptions. . .

Note that the first assumption on the previous slide is actually
correct.
The other assumptions are wrong, but are reasonable
approximations.
It is best to start as simple as possible and add complexity
later, in order to:

obtain a model that actually succeeds in explaining the data
with as few ingredients as possible;
check that inferences we draw from our model(s) are robust to
the inclusion of more biological details/realism.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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What variables should we include in our model?

Independent variable: time (t)
Dependent variable: Many options, e.g.,

Incidence (number of new infections per unit time)
Prevalence (total current number of infected individuals)
Death rate (number of deaths per unit time)
Death toll (number of deaths so far)

So, what would be best?
Not deaths, because whether or not you die may be unrelated
to how much you transmit.
But deaths are what we observe! What to do?!?
Make another assumption. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Additional assumption(s)

We actually want to know incidence or prevalence, but we
observe deaths.
Under what circumstances would daily deaths be a good
estimate of incidence? (i.e., What must we assume in addition
to the assumptions we have already made.)

5 Assume that the time from infection to death is exactly the
same (a certain number of days) for every individual who dies.

6 Assume that the probability of dying from the disease is the
same for every individual who is infected.

Then daily death counts are proportional to daily incidence a
certain number of days in the past, i.e., the “mortality curve”
that we observe is a translated and scaled version of the
“epidemic curve” (new cases per day).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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So. . . what variables should we include in our model?

Independent variable: time (t)
Dependent variable: one of:

Incidence (number of new infections per unit time)
Prevalence (total current number of infected individuals)

Which one?
Choose prevalence (I) because anybody who is currently
infectious can infect others, so it will probably be easier to
formulate a transmission model based on prevalence.
(Try not to lose sight of underlying biological mechanisms.)
But our mortality curve is related to incidence, not
prevalence!?! Argh. What to do?!?
Let’s work with prevalence and see how it works out.
Maybe we’ll be able to derive the incidence curve from a
model based on prevalence.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Notational note

We use I for prevalence because prevalence is the number of
infected individuals.

So, let’s try to write down a model. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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A first (näıve) attempt at an epidemic model

Variables: time t, prevalence I(t)
How does I increase?
Start with I0 infected individuals at time t = 0. What
happens for t > 0.
Let B = average number of contacts with susceptible
individuals that lead to a new infective per unit time per
infective in the population (and suppose B is constant). Then

I(t + ∆t) ' I(t) + B I(t)∆t

In the limit ∆t → 0, we have

dI
dt = BI =⇒ I(t) = I0eBt

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Beware: implicit assumptions that should be explicit

Ignored discrete nature of individuals when taking limit.

Ignored finite infectious periods!
Sometimes it isn’t obvious that we’ve made some assumptions
until after we see what the model predicts.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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How can we tell if our model is good?

Compare model predictions with data.

What is the best way to do that?

Depends on what predictions we’re trying to test.

Model predicts exponential growth.
How should we test that prediction?

Transforming the data might help.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Original data: P&I Mortality, Philadelphia, 1918
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logarithmic scale: P&I Mortality, Philadelphia, 1918
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Parameter estimation

How can we estimate the model parameters, I0 and B, from the
P&I data?

Fit a straight line through the part of the logarithmic
mortality curve that looks straight.

The slope of the line is B.

The “intercept” is log I0.
“Intercept” in quotes because we need to define t = 0 as the
time when exponential growth begins.

Note: Parameter estimation is, in general, a very tricky
business and deserves a great deal of attention (beyond the
scope of this course).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Näıve epidemic model

Variables: time t, prevalence I(t)

Parameter B = average number of contacts with susceptible
individuals that lead to a new infective per unit time per
infective in the population

dI
dt = BI =⇒ I(t) = I0eBt

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

Time t

In
fe

ct
ive

s I(t)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Näıve model: the good and the bad

Good:
Makes clear predictions
Predictions can be tested
Estimation of parameter (B) is easy

B is the slope of the straight portion of the epidemic curve on
the log scale. (Why?)
Remember we are imagining that the mortality curve is
equivalent to the epidemic curve after translation and scaling.
Why do translation and scaling not affect the estimate of B?
Assignment 2. . .

Bad:
Model is consistent only with exponential growth phase.
Absurd long-term prediction: unbounded growth in I(t)

Implicitly assumed that population size N = ∞.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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How can we improve our model?

Insist that population size is finite (N <∞).

Keep track of both infectives I(t) and susceptibles S(t).

Assume individuals who are not infected are susceptible:

I(t) + S(t) = N = constant.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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New model parameter(s)?

B = average number of contacts with susceptible individuals
that lead to a new infective per unit time per infective
In the näıve model, we assumed B = constant.
Is B really constant?
B depends on how many susceptibles there are.
B = βS(t)
β = average number of contacts between susceptibles and
infectives that lead to a new infective

per unit time
per infective
per susceptible

β is called the transmission rate.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Revised epidemic model: “SI model”

dI
dt = βS(t)I(t)

Two state variables. One equation. Problem? No:

dS
dt = −βS(t)I(t)

But S(t) = N − I(t) =⇒ I(t) is still the only variable:

dI
dt = βI(N − I)

Is this a better model?
What does it predict?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SI model: Example solution
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SI model: Analysis

We can find the exact solution. How?

I(t) = I0eNβt

1 + (I0/N)(eNβt − 1)
But exact solution is not particularly enlightening.

Qualitative analysis:
Initially I � N. What does the model predict then?
Exponential growth. Great!
As I grows, growth rate slows. Why?
Fewer and fewer susceptibles to infect.
Asymptotic behaviour? Equilibria? Periodic orbits?
(periodic orbit = recurrent epidemics)
(Non-trivial) periodic orbits impossible in one dimension
(existence-uniqueness theorem).
Consider equilibria. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SI model: Equilibrium Analysis

dI
dt = βI(N − I) , I ∈ [0,N]

Two equilibria:
I = 0 Disease Free Equilibrium (DFE)
I = N Endemic Equilibrium (EE)

Stability:
DFE is unstable (0 < I < N =⇒ dI/dt > 0)
EE is locally asymptotically stable (LAS)
EE is globally asymptotically stable (GAS)
(stability of EE follows from 0 < I < N =⇒ dI/dt > 0)
(GAS requires a little more analysis. . . Assignment 1)
Note: In one dimension, global analysis always easy.
In higher dimensions, often try to find Lyapunov function.
(Lyapunov function for EE of SI model?. . . Assignment 1)

Conclusions identical for any β > 0.
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SI model: Biological Inferences

For any transmission rate β:
Initially, exponential growth of cases.
Eventually, convergence to equilibrium (EE) at which
everyone in the population is infective. hmmm. . .

Is this model better than our first näıve model?
YES.

Still correctly predict initial exponential growth.
Can match epidemic curve for longer (up to the peak).
Does not predict absurd unbounded growth in infective
population.
But this model cannot explain the decline of the epidemic.

What should we do? Two obvious options:
1 Get depressed, drop the course.
2 Try to improve the model.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Recall motivating data: 1918 flu in Philadelphia

Mortality curve (linear scale)

Mortality curve (log scale)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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How can we improve on the SI model?

Include a key biological fact:
Individuals do not stay infectious with flu forever

Either they recover and are immune thereafter, or they die
(doesn’t matter which) (well, maybe to them it does)

Why don’t we care if someone recovers or dies?
(i.e., Why doesn’t it affect our dynamical inferences?)

Because in either case the individual is removed from the
transmission process, hence cannot affect the future pattern
of the epidemic.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model
Introduce new class of removed individuals:

R(t) = number of individuals who have either recovered and
are now immune or have died
Let γ = rate of removal from the infective class (via recovery
or death)

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Note: dS
dt + dI

dt + dR
dt = 0 =⇒ S + I + R = N = constant

Convenient to rescale variables by N and interpret S, I,R as
proportions of the population in each disease state.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Example numerical solution
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CPU time: 0.132S, Vector field evaluations: 1944, Ratio: 14727.3

Proportion infected I(t)

β = 4
γ = 1

Looks promising. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Flow Chart and Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Parameters:
Transmission rate β

Recovery rate γ

(or Removal rate)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Derived Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS
dt = −βSI

dI
dt = βSI − γI

dR
dt = γI

Derived Parameters:

Initial growth rate β − γ
Mean infectious period 1

γ

Basic Reproduction
Number

R0 = β

γ

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Derived parameters

The initial growth rate

How do we calculate the initial growth rate from our
model?
Consider change in prevalence initially (when I � 1):

dI
dt = βSI − γI

=
(
βS − γ

)
I

≈
(
β − γ

)
I if S ∼ 1 initially.

∴ Initially I(t) ≈ I0e(β−γ)t .
∴ Initial slope of logged prevalence curve is β − γ.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Derived parameters

The mean infectious period
How do we calculate the mean infectious period from our
model?
Suppose at time 0 there are I0 infectious individuals, and
suppose we can prevent contact with susceptibles.
The equation for I then simplifies to

dI
dt = −γI , I(0) = I0

We can solve this immediately to find

I(t) = I0e−γt

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Derived parameters

The mean infectious period, continued. . .

Thus, after time t, the number of people still infectious is
reduced by a factor e−γt

i.e., the proportion of individuals who have an infectious
period shorter than t is 1− e−γt

i.e., the cumulative distribution of the infectious period is
C(t) = 1− e−γt .

Therefore, the probability density of the infectious period
is p(t) = C ′(t) = d

dt

(
1− e−γt

)
= γe−γt

The mean of this exponential probability distribution is∫∞
0 t p(t) dt =

∫∞
0 t γe−γt dt = 1

γ

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Derived parameters

The basic reproduction number R0

R0 = β · 1
γ

= (transmission rate)
× (mean infectious period)

R0 is dimensionless

R0 is the average number of secondary cases caused by a
primary case (in a wholly susceptible population).
We must have R0 > 1 to have an epidemic. Why?

dI
dt = βSI − γI =

(
R0S − 1

)
γI

∴ R0 ≤ 1 =⇒ dI
dt ≤ 0 for all (S, I) ∈ [0, 1]2 =⇒ no growth

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis (biological well-posedness)

dS
dt = −βSI

dI
dt = βSI − γI

Be careful:
Is this a sensible
biological
model?

We need S, I and R all non-negative
at all times.

Does 0 ≤ S(0) + I(0) ≤ 1 imply
0 ≤ S(t) + I(t) ≤ 1 for all t > 0?

S = 0 =⇒ S ′ = 0, so
S(0) ≥ 0 =⇒ S(t) ≥ 0 ∀t > 0.

I = 0 =⇒ I ′ = 0, so
I(0) ≥ 0 =⇒ I(t) ≥ 0 ∀t > 0.

(S + I)′ = S ′ + I ′ = −γI ≤ 0
=⇒ S + I is always non-increasing
=⇒ S(t) + I(t) ≤ S(0) + I(0) ≤ 1.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis (equilibria etc.)

dS
dt = −βSI

dI
dt = βSI − γI

Equilibria:
(S, I) = (S0, 0) for
any S0 ∈ [0, 1]

Continuum of
equilibria.
Does this
make sense?
Biological
meaning of
equilibria?

Linearization:
DF(S,I) =

(
−βI −βS
βI βS − γ

)

DF(S0,0) =
(

0 −βS0
0 βS0 − γ

)
All equilibria are non-hyperbolic.

Periodic orbits:
(S + I)′ = −γI
=⇒ no periodic orbits. Why?

If I(0) = 0 then equilibrium.
If I(0) > 0 then (S + I)′ < 0, so
cannot increase back to initial
state.

Also follows from Index Theorem
(cannot enclose any equilibria).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://lalashan.mcmaster.ca/theobio/3F03/images/3/30/3fl32_2013.pdf
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Instructor: David Earn

Lecture 2
Epidemic Modelling; Intro to LaTeX and R

Monday 16 September 2019

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Announcements

Groups are formed.

Assignment 1 is due when class starts on Monday 23
September 2019.

Everyone should have received a e-mail invitation to Data
Camp.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://davidearn.github.io/math4mb/groups.html
http://davidearn.github.io/math4mb/assignments/assignments.html
http://datacamp.com
http://datacamp.com
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Attendance

Who is here?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Last time. . .

Began analysis of standard SIR model.

Showed SIR model:
is biologically well-posed
has a continuum of (disease-free) equilibria, all of which are
non-hyperbolic
does not have any periodic solutions

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis

dS
dt = −βSI

dI
dt = βSI − γI

Nullclines:

S ′ = 0 =⇒ S = 0 or I = 0
S nullclines: both coordinate axes

I ′ = 0 =⇒ I = 0 or S = γ/β

I nullclines: S axis and vertical line
at S = 1/R0

Is the I nullcline at S = 1/R0 always
relevant?

If, and only if, R0 > 1.
If R0 < 1 then S = 1/R0 is
outside the biologically relevant
region of the (S, I) phase plane.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis

dS
dt = −βSI

dI
dt = βSI − γI

Nullclines and Direction Field (R0 = 4):

S

I S = γ
β = 1

R0

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis

dS
dt = −βSI

dI
dt = βSI − γI

Phase Portrait:
We cannot find
solutions S(t) and
I(t) for this system.
We can find exact
analytical solution for
the phase portrait!

i.e., we can find an expression I(S) for
solution curves in the (S, I) phase plane.
Slope of I(S) depends only on S:

dI
dS = dI/dt

dS/dt = − 1 + 1
R0S (∗)

Note: Slope is flat for S = 1/R0, so max
or min of I(S) occurs on I nullcline if
R0 > 1
Easy to integrate (∗):∫ I

I0 dI =
∫ S

S0

(
−1 + 1

R0S

)
dS

I − I0 = −(S − S0) + 1
R0

log (S/S0)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis

Model Equations:

dS
dt = −βSI

dI
dt = βSI − γI

Solution Curves in
Phase Plane:

I + S − (I0 + S0)

= 1
R0

log (S/S0)

Phase Portrait (R0 = 4):

S

I S = γ
β = 1

R0

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis

Model Equations:

dS
dt = −βSI

dI
dt = βSI − γI

Solution Curves in
Phase Plane:

I + S − (I0 + S0)

= 1
R0

log (S/S0)

Final Size of Epidemic:

As t →∞ we have
(I∞ + S∞)− (I0 + S0) = 1

R0
log S∞/S0

But for a newly invading pathogen:
S0 ' 1, I0 ' 0, I∞ = 0
In the limit I0 → 0, we have
(S∞ − 1) = 1

R0
log S∞

Define “Final Size” Z = 1− S∞
∴ −Z = 1

R0
log (1− Z ), i.e.,

Z = 1− e−R0Z

This is a famous formula, derived by
Kermack and McKendrick in 1927.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Analysis

Final Size Formula:

Z = 1− e−R0Z

Final size is
determined entirely
by R0

Final size is never the
whole population
(Z < 1)
Formula is valid for
much more realistic
models (Ma & Earn,
2006)
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Basic Reproduction Number R0

For 1918 flu: 1.5 . R0 . 2
Proportion of world population
infected?
∼ 60–80%

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://davidearn.mcmaster.ca/publications/MaEarn2006
https://davidearn.mcmaster.ca/publications/MaEarn2006
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From Final Size to Reproduction Number

The final size relation allows us to estimate the proportion of
the population that will be infected given an estimate of R0.

But we can turn it around: if we know the final size Z then
we can easily estimate R0:

Z = 1− e−R0Z =⇒ R0 = − 1
Z log (1− Z )

This is useful post-hoc only (after an epidemic).

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Non-dimensionalization

Often helpful to use dimensionless parameters.
How do we identify “the right” dimensionless parameters?
β
γ ? γ

β ? β
β+γ ? β2

β2+γ2 ?
We choose β/γ because it has a natural interpretation.
But we are still left with γ as a second parameter.
Can we simplify the model somehow?
γ defines a time scale (1/γ is the mean infectious period).
If time unit is mean infectious period, then γ = 1.
So in these “natural” time units, the SIR model is

dS
dt = −R0SI, dI

dt = R0SI − I

There is really only one parameter in the model. The other is
just a time scale and does not affect the qualitative dynamics.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Results so far

Mathematical Results:
Model is biologically well-posed

0 ≤ S(0) + I(0) ≤ 1 =⇒ 0 ≤ S(t) + I(t) ≤ 1 ∀t > 0
No periodic orbits.
Continuum of equilibria.
Stability of equilibria:

Linearization useless (all equilibria non-hyperbolic).
Further analysis necessary.

Exact solution for phase portrait:
I(S) = I0 + (S0 − S) + 1

R0
log (S/S0)

Final size formula: Z = 1− e−R0Z

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Stability of equilibria

Phase Portrait (R0 = 4):

S

I S = γ
β = 1

R0

Model Equations:

dS
dt = −βSI, dI

dt = βSI − γI

Which equilibria are:
Unstable?

S0 > 1/R0

Stable?
S0 ≤ 1/R0

Asymptotically stable?
None!

How do we prove these
facts? (Assignment 1)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Effects of Control Measures

How could the final size of the 1918 pandemic have been
reduced?

Any intervention that reduces R0 reduces the final size.

What could have been done to reduce R0?

Masks? Quarantine? Isolation?

Ideally a vaccine, but no such luck in 1918.

Even in 2009, it took months to mass-produce vaccine.

But suppose there had been a vaccine immediately. . .

What proportion (p) of the population do we need to
vaccinate to eradicate an infectious disease?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Effects of Control Measures
Suppose a proportion (p) of the population is vaccinated before an
epidemic starts. Then:

At the start of the epidemic, the proportion of the population
that is susceptible is S0 = 1− p.
∴ Initially (at time t = 0) the rate of change of prevalence is

dI
dt

∣∣∣∣
t=0

=
((R0S − 1

)
I
)∣∣∣

t=0
=
(R0S0 − 1

)
I0

=
(R0(1− p)− 1

)
I0 < 0 ⇐⇒ R0(1− p) < 1

∴ An epidemic will be prevented if

p > pcrit = 1− 1
R0

∴ Public Health Agency will ask you to estimate R0.
Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Results so far

Biological inferences:

R0 is extremely important to estimate in practice!

Epidemic occurs if and only if R0 > 1.

Single epidemic, then disease disappears.
Proof?
Hint: SIR phase portrait indicates that every non-equilibrium
solution is a heteroclinic orbit.

Can prevent epidemic by vaccinating (or otherwise removing)
a proportion 1− 1

R0
from the transmission process.

Note: It doesn’t matter whether we remove people from the susceptible pool by
vaccination, isolation, or other means. What matters is the proportion of the

population who are removed from the transmission process.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Does it explain our data?

What about 1918 flu in Philadelphia?
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P&I Deaths

Date

Does the SIR model explain these data?
Can we fit the SIR model to the P&I time series?
If so, are our estimated parameter values (for R0 and 1/γ)
biologically reasonable?
Answers: Assignment 2. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: How solutions depend on R0

0 2 4 6 8
0.0
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0.3

0.4

Time [mean infectious periods]
CPU time: 0.128S, Vector field evaluations: 1944, Ratio: 15187.5

R0
4
3
2.5

Proportion infected I(t)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: prevalence vs. incidence
In the SIR model as we have defined it, prevalence is I(t) and
incidence is i(t) = βS(t)I(t) ,
so we can compute incidence i(t) from solutions to the SIR model,
and then compare predicted incidence with observed reports of cases
or deaths.
Could we have derived an equally sensible model starting from the
closer-to-observable quantity (incidence i) ?
The answer is YES,

dS
dt = −i(t) , (1a)

i(t) = R0 S(t)
∫ ∞

0
i(t − s) g(s) ds , (1b)

where g(s) is the generation interval distribution.
How do solutions of this integro-differential equation differ from
those of the SIR model as we have defined it?

If you are curious, see Champredon, Dushoff & Earn 2018.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://davidearn.mcmaster.ca/publications/ChampredonEtAl2018
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LATEX

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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TEX and LATEX

TEX is a computer-based typesetting system designed and
implemented by Donald Knuth in the 1970s.

LATEX is a particular TEX format written by Leslie Lamport. It
has become the de facto standard for mathematical
typesetting (e.g., books, journal articles, . . . ).

TEX has played an important role in the evolution of principles
of software development.

Literate programming
Reproducible research

Immediate goal: learn enough LATEX to do Assignment 1.

Goal for the term: become sufficiently competent with LATEX
and so that the final project can be submitted as a fully
reproducible document that “knits” LATEX and together.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Leslie_Lamport
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Reproducibility
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Getting started

Start RStudio

Work by constructing an script (see Rexamples.R,
accessible from Lecture Schedule).

Try some arithmetic and basic plotting.

Then try to make publication-quality graphs.

Other resources:
Jonathan Dushoff’s intro
Ben Bolker’s intro

Project home page
The official “Introduction to ” by Venables and Smith
(html, pdf)
Data Camp

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://davidearn.github.io/math4mb/lectures/Rexamples.R
https://davidearn.github.io/math4mb/lectures/LectureSchedule.html
http://lalashan.mcmaster.ca/theobio/bio_708/index.php/Introduction_to_R
https://ms.mcmaster.ca/~bolker/eeid/
https://www.r-project.org/
https://cran.r-project.org/doc/manuals/R-intro.html
https://cran.r-project.org/doc/manuals/R-intro.pdf
http://datacamp.com
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Figure 11.2 from HSD∗ (original from book)

∗Hirsch, Smale and Devaney (2013), “Differential equations, dynamical systems, and an introduction to chaos”.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Figure 11.2 from HSD (made from scratch in )

S

I S = γ
β = 1

R0

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Figure 11.1 from HSD (original from book)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Figure 11.1 from HSD (made from scratch in )

S

I S = γ
β = 1

R0

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology


