
Mathematics 4MB3/6MB3 Mathematical Biology

http://ms.mcmaster.ca/earn/4MB3

Fall 2024 ASSIGNMENT 4

This assignment is due on Crowdmark on Monday 11 November 2024 at
11:59pm. Do not submit a hardcopy. In addition, a compressed archive of
all your source files must be e-mailed to the instructor and TA (unless you
choose to invite the instructor and TA to an associated github repository).

General Notes

(i) Please re-read all the General Notes listed for previous assign-
ments.

(ii) Please re-read all the Technical Notes listed for previous as-
signments.

1 Time Series analysis of Recurrent Epidemics

(a) You should have received the following data files by e-mail:

meas uk lon 1944-94 wk.csv

meas uk lpl 1944-94 wk.csv

These plain text comma-separated-value files list weekly cases of measles
(in London and Liverpool, England, from 1944 to 1994). Depending
on which research direction you select, you might receive other files in
the same ymdc (year,month,day,count) format, where the count column
might contain cases or deaths, for example. Write the following func-
tions:

(i) read.ymdc(). Read a file in ymdc format and return a data frame
containing these data and including a date column that has ’s
Date class. The first (and potentially only) argument to this func-
tion should be the filename of the data file to be read.
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(ii) time.plot(). Given a data frame produced using read.ymdc(),
display the associated time plot. The first argument of the function
should be the data frame. Further optional argument(s) should
allow the user to smooth the time series with a moving average.
By default, this function should create a new plot but there should
be an option to add to an existing plot. Implement this by having
a logical add argument that is false by default (add=FALSE). This
will allow you to add a smoothed version of the time series on top
of the raw data, for example. The final argument should be the
ellipsis (...) so that details such as colour and line style can be
passed to the plotting commands used in this function.

(iii) periodogram(). Given a data frame produced using read.ymdc(),
display the associated period periodogram (power spectrum as a
function of period). The first argument of the function should be
the data frame. By default, the entire time series should be used,
but optional argument(s) should allow the user to specify a time
range of interest. Use ’s spectrum() function to compute the
power spectrum. Have add and ... arguments as in time.plot().
Note that if v is a vector containing a time series of interest, you
can obtain and plot its frequency periodogram as follows.

s <- spectrum(v, plot=FALSE)

plot( s$freq, s$spec, type="l")

(b) Using your functions, make a multi-panel plot that clearly shows the tem-
poral pattern of the time series and how its frequency structure changes
over time. Think carefully about how to make this multi-panel figure as
clear as possible for yourselves and your readers. Describe your figure,
explaining what aspects of your figure you feel are puzzling or interest-
ing and may be possible to understand using mechanistic mathematical
modelling. (Repeat this for each of the epidemic time series you are
given.)
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2 Stochastic Epidemic Simulations

Consider the SI model,

dI

dt
= β(N − I)I , I(0) = I0, (1)

where β is the transmission rate, N is the population size and I(t) is the
number of infected individuals at time t.

(a) Write an function SI.Gillespie() that uses the Gillespie algorithm
to produce a realization of a stochastic process whose mean field dynam-
ics are given by equation (1) in the limit N → ∞. Your function should
have arguments beta, N, I0 and tmax (the time at which to end the sim-
ulation). You may find it helpful (conceptually) to write equation (1) in
two-variable form:

dS

dt
= −βSI , S(0) = N − I0, (2a)

dI

dt
= βSI , I(0) = I0. (2b)

Note that there is only one type of event that can occur, so the second
part of the Gillespie algorithm (what type of event occurred) is trivial
for this model.

(b) Make a multi-panel plot comparing the deterministic and stochastic dy-
namics of the SI model for β = 1, I0 = 1 and N ∈ {32, 102, 103, 104}
(N = 32 is close to 101.5). Each panel should correspond to a different
value of N and should show 30 stochastic realizations together with the
deterministic solution.

Note: To make stochastic simulations exactly reproducible use set.seed().

3 R0 for smallpox

The natural history of smallpox is shown in Figure 1. The US Centers for
Disease Control and Prevention (CDC) has recently discovered that a group
of bioterrorists plans to reintroduce smallpox to the United States. The CDC
has reason to believe that the terrorists are also bioengineers and have suc-
cessfully altered the virus so that it causes the early rash stage to be twice
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as long as it was when the virus was last circulating naturally in the 1970s.
Moreover, the existing smallpox vaccine apparently provides no protection
against the altered virus. The CDC wants your opinion on how the alter-
ations to the virus will affect R0 and the expected final size of an epidemic
if the planned attack is successful.

(a) Construct a compartmental (ODE) smallpox transmission model based
on the natural history specified in Figure 1, including vital dynamics but
ignoring disease-induced death.

(b) Use a biological argument to find a formula for R0.

(c) Calculate R0 using the next generation matrix approach. Note: Your so-
lution should include F , V , F , V , and FV −1, in the most human-friendly
form you can find. However, feel free to use symbolic manipulation soft-
ware such as Maple, Mathematica or sage to help with the necessary
algebra and matrix computations.

(d) Based on your model, and R0 ∼ 5 for unaltered smallpox, what can
you say about the difference in R0 that can be expected for the newly
engineered virus vs. the original virus?

(e) Write a paragraph that you can imagine e-mailing to the CDC, in which
you do your best to answer their questions.

82 Ph.D. Thesis - Olga Krylova

(Hopkins 1983, p.3; Fenner et al. 1988, pp.121-168).



     




 

 

  

    







 

Figure 3.4: The natural history of smallpox infection. The prodrom stage begins with fever
but the patient is very rarely contagious. Early rash is the most contagious stage,
when the rash develops and transforms into bumps. During the pustular rash
stage bumps become pustules, which then turn into scabs during the pustules
and scabs stage and fall off during the resolving scabs stage. The infected
person is contagious until the last scab falls off.

The course of a single smallpox infection (its natural history) depends on

variant type, clinical type, and vaccination status of the host individual. Since the

ordinary type of Variola major was the most common type of smallpox, we will

describe its natural history here (Figure 3.4).

There is an incubation period during which the infected person has no

symptoms and is not contagious. The duration of this stage can vary from 7 to

19 days but in most cases is about 12 days. The prodrom stage begins with the

onset of fever and sometimes includes vomiting and diarrhea, and is rarely con-

tagious. The rash appears 2-4 days after the onset of fever. It starts as small red

spots on the tongue and in the mouth that grow into sores that break open within

24 hours of their appearance. At this point, a large amount of virus is contained

in the mouth and throat of the infected host, making him/her extremely contagious.

Then the rash spreads rapidly all over the body and in a few days transforms into

bumps filled with thick fluid. This early rash stage continues for about 4 days.

Figure 1: The natural history of smallpox infection. The prodrom stage begins with fever but the
patient is very rarely contagious. Early rash is the most contagious stage, when the rash develops and
transforms into bumps. During the pustular rash stage bumps become pustules, which then turn into
scabs during the pustules and scabs stage and fall off during the resolving scabs stage. The infected
person is contagious until the last scab falls off. (This is Figure 3.4 from page 82 of Olga Krylova’s 2011
McMaster University PhD thesis.)
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4 epigrowthfit (BONUS PROBLEM)

This problem leads you step by step through a simple application of Mikael
Jagan’s epigrowthfit package,

https://cran.r-project.org/web/packages/epigrowthfit/,

which you learned about in Mikael’s guest lecture.
Suppose that the time evolution of expected cumulative incidence during

an epidemic follows a generalized logistic (or “Richards”) model,

c(t; θ) =
K

[1 + a exp(−ar(t− tinfl))]1/a
, θ = (log r, log tinfl, logK, log a) ∈ R4 ,

(3)
where r, tinfl, K, a > 0 represent an initial exponential growth rate, inflection
time, final size, and “shape” parameter, respectively. The standard logistic
model is the special case obtained by setting a = 1.

(a) Write an R function richards(t, theta) to compute c(t; θ). It must
be “vectorized” in t, so that length(richards(t, theta)) is equal to
length(t). Note that θ specifies the “natural” parameters r, tinfl, K, a
on an unconstrained logarithmic scale: the domain is all of R4 rather
than the subset R4

>0. (This is a deliberate choice: optimization over an
unconstrained domain tends to be more robust to numerical errors and
is supported by a broader class of optimization algorithms.)

(b) Write an R function richards.sub(s, t, theta) to compute expected
incidence during time intervals (s, t]:

f(s, t; θ) = c(t; θ)− c(s; θ) . (4)

It must be vectorized in s and t. You can assume that length(s) and
length(t) are equal.

(c) Write an R function richards.nll(s, t, x, theta) to compute the
negative log likelihood L(θ) of the model θ given some data {(si, ti, xi)}ni=1,
where xi is a count of infections over a time interval (si, ti]. Suppose that
xi is realization of a random variable Xi distributed as

Xi ∼ NegativeBinomial(µ = f(si, ti; θ), k = 20000) . (5)
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In other words, Xi follows a negative binomial distribution with mean
µ = f(si, ti; θ) and “dispersion” k = 20000 (implying variance equal
to µ(1 + µ/20000)). To compute negative binomial probabilities, use
function dnbinom; see help("dnbinom") for usage details.

(d) Use function rnbinom to simulate counts {Xi}ni=1 distributed as above,
taking si = i − 1, ti = i, n = 32, r = 0.08, tinfl = 22.5, K = 10000,
and a = 1. Evaluate set.seed(16131) before calling rnbinom so that
your simulation is reproducible. To verify that the rnbinom result is
reasonable, print {xi}ni=1 and plot (in separate panels, as points) the
corresponding incidence time series {(ti, xi)}ni=1 and cumulative incidence
time series {(ti,

∑i
j=1 xj)}ni=1. Functions print, plot, and cumsum will

be useful here.

(e) Compute L(θ) for θ = θ0 defined by r = 0.08, tinfl = 22.5, K = 10000,
and a = 1 as well as for θ = θ1 defined by r = 0.1, tinfl = 20, K = 12500,
and a = 1.

(f) Write an R function richards.nll.opt(s, t, x, thetaInit) return-
ing a list containing a local minimum point θ̂ of L given data {(si, ti, xi)}ni=1

supplied by s, t, and x. Use function optim to obtain such a list, initial-
izing the optimizer with thetaInit, the user’s initial guess of θ̂. Hence
richards.nll.opt should return the value of optim(par = thetaInit,

fn = <some function>), and the main challenge for you is to define fn
appropriately. For guidance, do consult help("optim") and the code
examples from Mikael’s lecture on October 1.

(g) Use richards.nll.opt to compute θ̂0 and L̂0 = L(θ̂) given the simulated
data, starting from θ1. We are using subscript 0 here to emphasize
that θ̂0 estimates θ0, the data-generating parameter vector. θ̂0 and L̂0

are components par and value of the list result of richards.nll.opt,
which you can access using [[ (as in object[["par"]]) or using $ (as
in object$value). Note that, due to the possibility of multiple local
minima, the error θ0 − θ̂0 may be greater in magnitude than you would
expect.1

1Here, multiple local minima arise due to nonidentifiability of r and a. In practice,
one would want to penalize | log(a)| so that optimization favours values of a nearer to 1,
i.e., generalized logistic models nearer to the standard one. Doing so, one tends to obtain
more accurate estimates of r.
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(h) Plot again (as points) your simulated incidence time series {(ti, xi)}ni=1.
Use function lines to add (in the same panel, as curves) expected inci-
dence {(ti, f(si, ti; θ0)}ni=1 and estimated expected incidence {(ti, f(si, ti; θ̂0)}ni=1.
Style the curves differently so that they can be distinguished visually.
You can do this by adjusting the line type using lines argument lty.
See help("lines"). (It directs you to help("par") for details about
lty and other graphical parameters.)

(i) In practice, one must test and not assume that the result of a numerical
optimization corresponds to a local optimum point. Discuss how you
could test whether θ̂ is a local minimum point of L (or a good approxi-
mation of one).

(j) In practice, whether a numerical optimizer converges to a biologically
meaningful local optimum point can depend heavily on reasonable start-
ing values for parameters. An estimate of r, the initial exponential
growth rate, is the slope of a linear model fit to the logarithm of cumu-
lative incidence—that is, to the points {(ti, log(

∑i
j=1 xj))}mi=1 for some

m ≤ n (as growth is exponential only initially). Discuss how you could
use the cumulative incidence time series {(ti,

∑i
j=1 xj)}ni=1 to obtain an

estimate of tinfl, the time of inflection in c(t; θ). Hint: The inflection oc-
curs when the sign of the second derivative c′′(t; θ) changes from positive
to negative.

(k) epigrowthfit is an R package designed to automate fitting of simple non-
linear models, including the Richards model (3), to incidence time series.2

Here, you will use epigrowthfit function egf to reproduce the value of θ̂
that you obtained using your home-grown function richards.nll.opt.
help("egf") is a good reference, but it covers much more general usage,
so essential details are repeated here.

Start by installing and attaching the package:

install.packages("epigrowthfit")

library(epigrowthfit)

2Actually, epigrowthfit is designed to fit a much broader class of models—nonlinear
mixed effects models—to collections of incidence time series, including time series that
span multiple epidemics. Here, we are exploring just the simplest usage: for one time
series spanning one epidemic.
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Put your simulated incidence time series into a data frame in the format
demanded by egf:

data_ts <- data.frame(time = 0:n, x = c(NA, <your rnbinom result>))

The constraints are that time must be increasing and that x[i] must
give the count of infections observed over the interval from time[i-1]

to time[i]. The first element of x is always ignored.

Now define a second data frame indicating the “window” of time that you
want to consider. Here, we want the entire simulated time series, but,
in practice, it is common to have a much longer time series containing
segments that we would want to exclude.

data_windows <- data.frame(start = 0, end = n)

Now define formulae that will tell egf how to interpret your data frames.

formula_ts <- cbind(time, x) ~ 1

formula_windows <- cbind(start, end) ~ 1

The right hand side of ~ is normally used for grouping variables when
we deal with collections of time series. Here, 1 indicates “no grouping”
and that we are dealing with exactly one time series.

It remains to specify the model that we want to estimate and initial
values for the parameters of that model. For a single time series spanning
a single epidemic, it turns out that the default initial values are sensible,
but, because we aim to reproduce the earlier result, we will override
them with θ1. A complication is that we sometimes want to estimate the
negative binomial dispersion parameter k, but here we fix k = 20000.
This detail must be specified, too:

model <- egf_model(curve = "richards", family = "nbinom")

egf_top(model)

[1] "log(r)" "log(tinfl)" "log(K)" "log(a)" "log(disp)"

init <- list(beta = c(log(0.1), log(20), log(12500), log(1), log(20000)))

map <- list(beta = 5) # fix the parameter at index 5
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We used egf top to determine the relation between elements of init3

and the “natural” parameters of the model (r, tinfl,K, a, and the negative
binomial dispersion parameter).

We are finally equipped to call egf:

object <- egf(model = model,

formula_ts = formula_ts,

formula_windows = formula_windows,

data_ts = data_ts,

data_windows = data_windows,

init = init,

map = map)

The result is an object of class "egf" with methods for interrogating the
estimated model. Use functions print, coef, and plot to print details
about the object, extract θ̂0, and plot the incidence time series contained
in data ts alongside estimated expected incidence. These are generic
functions designed to dispatch methods for the class of the first argument.
Documentation for the methods is available as, e.g., help("plot.egf").
When calling plot, you will want to pass time as = "numeric" and
ylim = c(ymin, ymax) in order to produce more sensible axes. (Sub-
stitute suitable values for ymin and ymax.)

— END OF ASSIGNMENT —

Compile time for this document: November 4, 2024 @ 16:59

3More precisely, component beta of the list init, where the name beta is just a
convention.
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