

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

•

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 28 Lyapunov Functions Wednesday 13 November 2013

Instructor: David Earn Mathematics 3F03 Advanced Differential Equations

Announcements

Assignment 4:

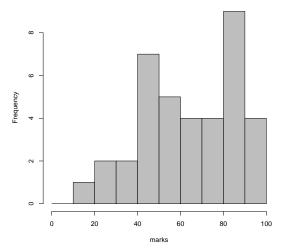
Due this Friday 15 Nov 2013, 1:30pm.

Midterm Test #1:

Marking complete.

Test 1 Results

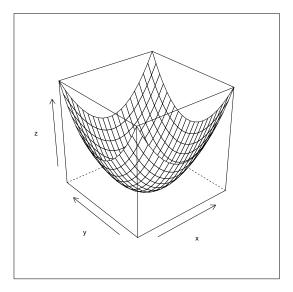
Math 3F03 2013 Test 1 (n: 38, median: 63%)



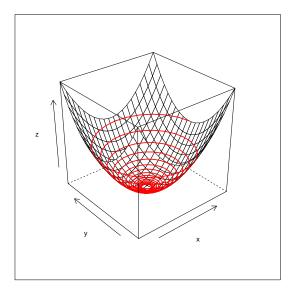
Establishing Stability

- If X_{*} is a hyperbolic equilibrium then linearize and use the linearization (Hartman-Grobman) theorem.
- If X_{*} is a non-hyperbolic equilibrium then linearization tells us nothing and we must use other methods to establish stability or instability.
- Even for hyperbolic X_{*}, if we care about the extent of the set of initial conditions that converge to X_{*} (the "basin of attraction of X_{*}") then linearization is not enough. Linearization yields only "local" information.

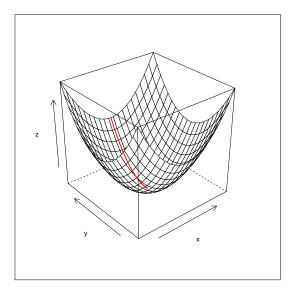
Lyapunov function idea: Surface z = L(x, y)



Trajectory: $(x(t), y(t), z(t)), \quad z(t) = L(x(t), y(t))$



Trajectory: $(x(t), y(t), z(t)), \quad z(t) = L(x(t), y(t))$



Establishing Stability: Lyapunov's Direct Method

Theorem (Lyapunov's Direct Method)

Consider an equilibrium X_* of X' = F(X) and an open set S containing X_* . If \exists a differentiable function $L : S \to \mathbb{R}$ such that (a) $L(X_*) = 0$ and L(X) > 0 $\forall X \in \mathcal{S} \setminus \{X_*\}$ (L positive definite on S) (b) $\hat{L}(X) \leq 0 \quad \forall X \in \mathcal{S} \setminus \{X_*\}$ (L negative semi-definite on \mathcal{S}) then X_* is stable and L is called a Lyapunov function. If. in addition. (c) $\dot{L}(X) < 0 \quad \forall X \in S \setminus \{X_*\}$ (*L* negative definite on S) then X_* is asymptotically stable and L is called a strict Lyapunov function.

Discovering Lyapunov functions is an art!

Establishing Stability: Lyapunov's Direct Method

Note that

$$\dot{L} = \frac{dL}{dt} = \nabla L \cdot X'$$

So, condition for Lyapunov function is

$$L \ge 0$$
 and $\nabla L \cdot X' \le 0$ $(X \ne X_*)$

Condition for strict Lyapunov function is

$$L \ge 0$$
 and $\nabla L \cdot X' < 0$ $(X \ne X_*)$

Lyapunov function example

Example (1)

Find and classify all equilibria of the planar nonlinear system

$$x' = -3x^3 + 2xy^2$$
$$y' = -y^3$$

Solution.

$$(x', y') = (0, 0) \iff (x, y) = (0, 0), \text{ so } \exists ! \text{ equilibrium at } (0, 0).$$
$$DF_{(x,y)} = \begin{pmatrix} -9x^2 + 2y^2 & 4xy \\ 0 & -3y^2 \end{pmatrix}.$$
$$\therefore DF_{(0,0)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies \text{ non-hyperbolic.}$$
Cannot use linearization theorem.

Lyapunov function example

$$x' = -3x^3 + 2xy^3$$
$$y' = -y^3$$

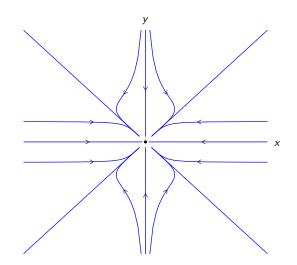
Solution (CONTINUED).

Try to find Lyapunov function L(x, y) to prove $X_* = (0, 0)$ is a stable equilibrium.

We need L > 0 and $\nabla L \cdot X' < 0$. Try $L(x, y) = x^2 + y^2$. Then $L(x, y) \ge 0 \quad \forall (x, y) \in \mathbb{R}^2$, and $\dot{L} = \frac{dL}{dt} = \nabla L \cdot (x', y')$ $= (2x, 2y) \cdot (-3x^3 + 2xy^2, -y^3) = -6x^4 + 4x^2y^2 - 2y^4$ $= -2(3x^{4} - 2x^{2}y^{2} + y^{4}) = -2(2x^{4} + (x^{4} - 2x^{2}y^{2} + y^{4}))$ $= -2(2x^4 + (x^2 - y^2)^2)$ $< 0 \quad \forall (x, y) \in \mathbb{R}^2 \setminus \{X_*\} \implies (0, 0) \text{ is asymptotically stable.}$

Lyapunov function example

$$x' = -3x^3 + 2xy^2$$
$$y' = -y^3$$



Lyapunov function hint

- The example just considered was contrived... Lyapunov functions are not usually perfect circular parabaloids!
- But, functions with quasi-elliptical level sets often work as Lyapunov functions, *e.g.*,

$$ax^{2} + by^{2}$$
$$ax^{4} + by^{2}$$
$$ax^{2} + by^{4}$$
$$ax^{4} + by^{4}$$

Often useful to try a function of the form

$$L(x,y) = ax^n + by^m$$

and then choose a, b, n, m so L has required properties.

Lyapunov function example

Example (2)

Find and determine the stability of all equilibria of

$$x' = -2y^3$$
$$y' = x - 3y^3$$

Solution.

$$(x', y') = (0, 0) \iff (x, y) = (0, 0), \text{ so } \exists ! \text{ equilibrium at } (0, 0).$$
$$DF_{(x,y)} = \begin{pmatrix} 0 & -6y^2 \\ 1 & -9y^2 \end{pmatrix}.$$
$$\therefore DF_{(0,0)} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \implies \text{ non-hyperbolic.}$$
Cannot use linearization theorem.

Lyapunov function example

$$x' = -2y^3$$
$$y' = x - 3y^3$$

Solution (CONTINUED).

We need $L \ge 0$ and $\nabla L \cdot X' \le 0$. Try $L(x, y) = ax^2 + by^4$, with $a, b \ge 0$. Then $L(x, y) \ge 0$ $\forall (x, y) \in \mathbb{R}^2$, and

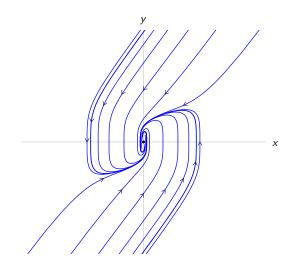
$$\dot{L} = \frac{dL}{dt} = \nabla L \cdot (x', y') = (2ax, 4by^3) \cdot (-2y^3, x - 3y^3)$$
$$= -4axy^3 + 4bxy^3 - 12by^6 = 4(b - a)xy^3 - 12by^6$$

Choose a = b > 0 to eliminate first term and ensure second term ≤ 0 . *e.g.*, a = b = 1 yields

 $\nabla L \cdot X' = -12y^6 \le 0 \ \forall (x, y) \in \mathbb{R}^2 \setminus \{X_*\} \implies (0, 0)$ is stable. Note that we CANNOT conclude that X_* is asymptotically stable: Whole x-axis (y = 0) yields $\nabla L \cdot X' = 0$.

Lyapunov function example

 $x' = -2y^3$ $y' = x - 3y^3$



Using Lyapunov functions to prove instability

Theorem (Lyapunov's instability theorem)

Consider an equilibrium X_* of X' = F(X) and suppose \exists differentiable function $L : B \to \mathbb{R}$, where B is an open ball in \mathbb{R}^n , such that

(a)
$$L(X_*) = 0$$
,
(b) for any ball $B_1 \subset B$, $\exists X_1 \in B_1$ such that $L(X_1) > 0$,
(c) $\dot{L}(X) > 0 \quad \forall X \in B \setminus \{X_*\}$ (\dot{L} positive definite on B).
Then X_* is unstable.

Example (3)

$$x' = -y^3$$
$$y' = -x^3$$

 $x' = -v^{3}$

Lyapunov instability example

Solution.

$$(x', y') = (0, 0) \iff (x, y) = (0, 0), \text{ so } \exists ! \text{ equilibrium at } (0, 0)$$
$$DF_{(x,y)} = \begin{pmatrix} 0 & -3y^2 \\ -3x^2 & 0 \end{pmatrix}.$$
$$\therefore DF_{(0,0)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies \text{non-hyperbolic.}$$

Cannot use linearization theorem.

Look for a function L(x, y) with a gradient ∇L that "dots to positive" with the vector field (x', y').

Consider L(x, y) = -xy.

Then L(0,0) = 0 and L(x, y) > 0 in 2nd and 4th quadrants.

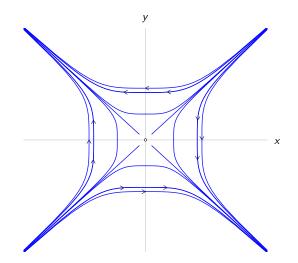
$$\dot{L}(X) = \nabla L \cdot X' = (-y, -x) \cdot (-y^3, -x^3)$$

 $= y^4 + x^4 > 0$ except at origin.

 $\therefore X_* = (0,0)$ is unstable.

Lyapunov instability example

$$x' = -y^3$$
$$y' = -x^3$$



Instructor: David Earn Mathematics 3F03 Advanced Differential Equations

Local vs Global Stability

- We have talked only about **local stability** of equilibria (and other limit sets such as periodic orbits).
- But Lyapunov's method shows that all states in a given ball stay near or converge to X_{*}.
- If we can construct a strict Lyapunov function that works on all of ℝⁿ then all states will converge to X_{*} as t → ∞.
- We then say X_* is globally asymptotically stable (GAS).
- Lyapunov functions are useful for proving GAS even if X_{*} can be shown to be **locally asymptotically stable** (LAS) via linearization.

Non-equilibrium Limit Sets

- Lyapunov's method can be used to establish stability (or instability) of other types of limit sets (*e.g.*, periodic orbits).
- As with equilibria, the challenge is to find *L*.
- There is no general way known to discover Lyapunov functions.