
1/37

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



2/37

20 Space I

21 Space II

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Space I 3/37

Mathematics
and Statistics∫
M

dω =

∫
∂M

ω

Mathematics 4MB3/6MB3
Mathematical Biology

Instructor: David Earn

Lecture 20
Space I

Monday 4 March 2019

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Space I 4/37

Announcments

Midterm test:
Date: Monday 11 March 2019
Time: 9:30am–11:20am
Location: Hamilton Hall 410

Assignment 4 is due after the midterm, but do it before the
midterm! Due Wednesday 13 March 2019 at 10:30am

Make sure to complete the question on calculating R0 on this
assignment before the midterm test.

Draft Project Description Document has been posted.

Questions?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://davidearn.github.io/math4mb/assignments/assignments.html
https://davidearn.github.io/math4mb/project/project.html
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Spatial Epidemic Dynamics

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Something to think about

All of our analysis has been of temporal patterns of epidemics

What about spatial patterns?

What problems are suggested by observed spatial epidemic
patterns?

Can spatial epidemic data suggest improved strategies for
control?

Can we reduce the eradication threshold below pcrit = 1− 1
R0

?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles and Whooping Cough in 60 UK cities

Rohani, Earn & Grenfell (1999) Science 286, 968–971

Measles

Whooping
Cough

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Better Control? Eradication?

The term-time forced SEIR model successfully predicts past
patterns of epidemics of childhood diseases

Can we manipulate epidemics predictably so as to increase
probability of eradication?

Can we eradicate measles?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Idea for eradicating measles

Try to re-synchronize measles epidemics in the UK and,
moreover, synchronize measles epidemics worldwide:
synchrony is good

Devise new vaccination strategy that tends to synchronize. . .

Avoid spatially structured epidemics. . .

Time to think about the mathematics of synchrony. . .

But analytical theory of synchrony in a periodically forced
system of differential equations is mathematically
demanding. . .

So let’s consider a much simpler biological model. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The
Logistic Map

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map

Simplest non-trivial discrete time population model for a
single species (with non-overlapping generations) in a single
habitat patch.

Time: t = 0, 1, 2, 3, . . .

State: x ∈ [0, 1] (population density)

Population density at time t is x t . Solutions are sequences:

x0, x1, x2, . . .

x t+1 = F (x t) for some reproduction function F (x).

For logistic map: F (x) = rx(1− x), so x t+1 = rx t(1− x t).
x t+1 = [r(1− x t)]x t =⇒ r is maximum fecundity (which is
achieved in limit of very small population density).

What kinds of dynamics are possible for the Logistic Map?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 0.5
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 0.9
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 1
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 1.1
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 1.5
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 2

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Time t

x t+1 = rx t(1− x t), r = 2, x0 = 0.31831

x t

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 2.5
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 3
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 3.2
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 3.5
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 3.75
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 3.83
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Time Series, r = 4

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Time t

x t+1 = rx t(1− x t), r = 4, x0 = 0.31831

x t

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map Summary

Time series show:

r ≤ 1 =⇒ Extinction.
1 < r < 3 =⇒ Persistence at equilibrium.
r > 3 =⇒ period doubling cascade to chaos, then appearance
of cycles of all possible lengths, and more chaos, . . .

How can we summarize this in a diagram?

Bifurcation diagram (wrt r).
Ignore transient behaviour: just show attractor.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map, F (x) = rx(1− x), 1 ≤ r ≤ 4
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map, F (x) = rx(1− x), 2.9 ≤ r ≤ 4
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map, F (x) = rx(1− x), 3.4 ≤ r ≤ 4
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Logistic Map as a Tool to Investigate Synchrony

Very simple single-patch model: only one state variable.

Displays all kinds of dynamics from GAS equilibrium, to
periodic orbits, to chaos.

This was extremely surprising to population biologists and
mathematicians in the 1970s.

May RM (1976) “Simple mathematical models with very complicated dynamics” Nature 261, 459–467

Easier to work with logistic map as single patch dynamics
than SIR or SEIR model.

Can still understand how synchrony works conceptually.

Now we are ready for the . . .
. . .Mathematics of Synchrony . . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Mathematics of Synchrony

System comprised of isolated patches
e.g., cities, labelled i = 1, . . . , n

State of system in patch i specified by xi
e.g., xi = (Si ,Ei , Ii ,Ri )

Connectivity of patches specified by a dispersal matrix
M = (mij)

System is coherent (perfectly synchronous) if the state is the
same in all patches
i.e., x1 = x2 = · · · = xn

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Illustrative example: logistic metapopulation

Single patch model: x t+1 = F (x t)

Reproduction function: F (x) = rx(1− x)

Multi-patch model: x t+1
i =

n∑
j=1

mi jF (xj
t)

i.e.,

x t+1
1
...

x t+1
n

 =

m11 · · · m1n
...

. . .
...

mn1 · · · mnn


F (x t1)

...
F (x tn)


where M = (mi j) is dispersal matrix.

Colour coding of indices:
row indices are red
column indices are cyan

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Basic properties of dispersal matrices M = (mij)

Discrete-time metapopulation model:

x t+1
i =

n∑
j=1

mi jF (x tj ), i = 1, 2, . . . , n.

mi j = proportion of population in patch j
that disperses to patch i .

∴ 0 ≤ mi j ≤ 1 for all i and j
(each mi j is non-negative and at most 1)

Total proportion that leaves or stays in patch j :
n∑

i=1

mi j

(sum of column j)

∴
n∑

i=1

mi j ≤ 1 (every column sums to at most 1)

Could be < 1 if some individuals are lost (die) while dispersing.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Basic properties of dispersal matrices M = (mij)

Discrete-time metapopulation model:

x t+1
i =

n∑
j=1

mi jF (x tj ), i = 1, 2, . . . , n.

Definition (No loss dispersal matrix)

An n × n matrix M = (mi j) is said to be a no loss dispersal
matrix if all its entries are non-negative (mi j ≥ 0 for all i and j)
and its column sums are all 1, i.e.,

n∑
i=1

mi j = 1 , for each j = 1, . . . , n.

The dispersal process is “conservative” in this case.

A no loss dispersal matrix is also said to be “column stochastic”.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Notation for coherent states

Discrete-time metapopulation model:

x t+1
i =

n∑
j=1

mi jF (x tj ), i = 1, 2, . . . , n.

State at time t is xt = (x t1, . . . , x
t
n) ∈ Rn.

If state x is coherent, then for some x ∈ R we have

x = (x1, x2, . . . , xn)

= (x , x , . . . , x) = x(1, 1, . . . , 1)

For convenience, define

e = (1, 1, . . . , 1) ∈ Rn

so any coherent state can be written xe , for some x ∈ R.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Constraint on row sums of dispersal matrix M

Lemma (Row sums are the same)

If all initially coherent states remain coherent then the row sums of
the dispersal matrix are all the same.

Proof.

Suppose initially coherent states remain coherent, i.e.,
xt = ae =⇒ xt+1 = be for some b ∈ R.
Choose a such that F (a) 6= 0. Then

x t+1
i = b =

n∑
j=1

mi jF (x tj ) =
n∑

j=1

mi jF (a) = F (a)
n∑

j=1

mi j

=⇒
n∑

j=1

mi j =
b

F (a)
(independent of i)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Constraint on row sums of dispersal matrix M

Lemma (Row sums are all 1)

If every solution {x t} of the single patch map F (x) yields a
coherent solution {x te} of the full map then the row sums of the
dispersal matrix are all 1.

Proof.

Suppose xt = ae =⇒ xt+1 = F (a)e and F (a) 6= 0. Then

x t+1
i = F (a) =

n∑
j=1

mi jF (x tj ) =
n∑

j=1

mi jF (a) = F (a)
n∑

j=1

mi j

=⇒
n∑

j=1

mi j = 1 (independent of i)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology


