## Faculty of Science

 Graduate Studies Open HouseGet a head start on grad school \& learn about everything from \#Gradlife to crafting the perfect application

# Tuesday, March $12^{\text {th }} 2019$ CIBC Hall 5:00PM - 6:30PM 

Contact: trepanr@mcmaster.ca

20 Space I

## 21 Space II

## McMaster University

# Mathematics 4MB3/6MB3 Mathematical Biology 

Instructor: David Earn

Lecture 20
Space I
Monday 4 March 2019

## Announcments

■ Midterm test:
■ Date: Monday 11 March 2019
■ Time: 9:30am-11:20am

- Location: Hamilton Hall 410

■ Assignment 4 is due after the midterm, but do it before the midterm! Due Wednesday 13 March 2019 at 10:30am

- Make sure to complete the question on calculating $\mathcal{R}_{0}$ on this assignment before the midterm test.

■ Draft Project Description Document has been posted.

- Questions?


## Spatial Epidemic Dynamics



## Something to think about

- All of our analysis has been of temporal patterns of epidemics

■ What about spatial patterns?

■ What problems are suggested by observed spatial epidemic patterns?

■ Can spatial epidemic data suggest improved strategies for control?

- Can we reduce the eradication threshold below $p_{\text {crit }}=1-\frac{1}{\mathcal{R}_{0}}$ ?


## Measles and Whooping Cough in 60 UK cities

Measles

Whooping
Cough


Rohani, Earn \& Grenfell (1999) Science 286, 968-971

## Better Control? Eradication?

- The term-time forced SEIR model successfully predicts past patterns of epidemics of childhood diseases
- Can we manipulate epidemics predictably so as to increase probability of eradication?

■ Can we eradicate measles?

## Idea for eradicating measles

- Try to re-synchronize measles epidemics in the UK and, moreover, synchronize measles epidemics worldwide: synchrony is good

■ Devise new vaccination strategy that tends to synchronize...
■ Avoid spatially structured epidemics...

- Time to think about the mathematics of synchrony...
- But analytical theory of synchrony in a periodically forced system of differential equations is mathematically demanding...

■ So let's consider a much simpler biological model. . .

## The Logistic Map

## Logistic Map

- Simplest non-trivial discrete time population model for a single species (with non-overlapping generations) in a single habitat patch.
- Time: $t=0,1,2,3, \ldots$
- State: $x \in[0,1] \quad$ (population density)
- Population density at time $t$ is $x^{t}$. Solutions are sequences:

$$
x^{0}, x^{1}, x^{2}, \ldots
$$

- $x^{t+1}=F\left(x^{t}\right)$ for some reproduction function $F(x)$.

■ For logistic map: $F(x)=r x(1-x)$, so $x^{t+1}=r x^{t}\left(1-x^{t}\right)$. $x^{t+1}=\left[r\left(1-x^{t}\right)\right] x^{t} \Longrightarrow r$ is maximum fecundity (which is achieved in limit of very small population density).

■ What kinds of dynamics are possible for the Logistic Map?

## Logistic Map Time Series, $\quad r=0.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=0.5, \quad x_{0}=0.63662
$$



## Logistic Map Time Series, $\quad r=0.9$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=0.9, \quad x_{0}=0.63662
$$



## Logistic Map Time Series, $\quad r=1$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=1, \quad x_{0}=0.63662
$$



## Logistic Map Time Series, $\quad r=1.1$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=1.1, \quad x_{0}=0.63662
$$



## Logistic Map Time Series, $\quad r=1.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=1.5, \quad x_{0}=0.63662
$$



## Logistic Map Time Series, $\quad r=2$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=2, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=2.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=2.5, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=3$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=3.2$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.2, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=3.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.5, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=3.75$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.75, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=3.83$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.83, \quad x_{0}=0.31831
$$



## Logistic Map Time Series, $\quad r=4$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=4, \quad x_{0}=0.31831
$$



## Logistic Map Summary

- Time series show:
- $r \leq 1 \Longrightarrow$ Extinction.
- $1<r<3 \Longrightarrow$ Persistence at equilibrium.

■ $r>3 \Longrightarrow$ period doubling cascade to chaos, then appearance of cycles of all possible lengths, and more chaos, ...

- How can we summarize this in a diagram?
- Bifurcation diagram (wrt $r$ ).
- Ignore transient behaviour: just show attractor.


## Logistic Map, $F(x)=r x(1-x), \quad 1 \leq r \leq 4$



## Logistic Map, $F(x)=r x(1-x), \quad 2.9 \leq r \leq 4$



## Logistic Map, $F(x)=r x(1-x), \quad 3.4 \leq r \leq 4$



Instructor: David Earn

## McMaster University

# Mathematics 4MB3/6MB3 Mathematical Biology 

Instructor: David Earn

Lecture 21
Space II
Monday 4 March 2019

## Logistic Map as a Tool to Investigate Synchrony

■ Very simple single-patch model: only one state variable.
■ Displays all kinds of dynamics from GAS equilibrium, to periodic orbits, to chaos.

■ This was extremely surprising to population biologists and mathematicians in the 1970s.

May RM (1976) "Simple mathematical models with very complicated dynamics" Nature 261, 459-467
■ Easier to work with logistic map as single patch dynamics than SIR or SEIR model.

■ Can still understand how synchrony works conceptually.
■ Now we are ready for the ...
... Mathematics of Synchrony ...

## Mathematics of Synchrony

■ System comprised of isolated patches
e.g., cities, labelled $i=1, \ldots, n$

■ State of system in patch $i$ specified by $\mathbf{x}_{i}$ e.g., $\mathbf{x}_{i}=\left(S_{i}, E_{i}, I_{i}, R_{i}\right)$

- Connectivity of patches specified by a dispersal matrix $\mathrm{M}=\left(m_{i j}\right)$

■ System is coherent (perfectly synchronous) if the state is the same in all patches i.e., $\mathbf{x}_{1}=\mathbf{x}_{2}=\cdots=\mathbf{x}_{n}$

## Illustrative example: logistic metapopulation

- Single patch model: $x^{t+1}=F\left(x^{t}\right)$
- Reproduction function: $F(x)=r x(1-x)$
- Multi-patch model: $\quad x_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} F\left(x_{j}^{t}\right)$

$$
\text { i.e., } \quad\left(\begin{array}{c}
x_{1}^{t+1} \\
\vdots \\
x_{n}^{t+1}
\end{array}\right)=\left(\begin{array}{ccc}
m_{11} & \cdots & m_{1 n} \\
\vdots & \ddots & \vdots \\
m_{n 1} & \cdots & m_{n n}
\end{array}\right)\left(\begin{array}{c}
F\left(x_{1}^{t}\right) \\
\vdots \\
F\left(x_{n}^{t}\right)
\end{array}\right)
$$

where $\mathrm{M}=\left(m_{i j}\right)$ is dispersal matrix.

- Colour coding of indices:
- row indices are red
- column indices are cyan


## Basic properties of dispersal matrices $\mathrm{M}=\left(m_{i j}\right)$

Discrete-time metapopulation model:

$$
x_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} F\left(x_{j}^{t}\right), \quad i=1,2, \ldots, n .
$$

- $m_{i j}=$ proportion of population in patch $j$ that disperses to patch $i$.

■ $\therefore 0 \leq m_{i j} \leq 1 \quad$ for all $i$ and $j$
(each $m_{i j}$ is non-negative and at most 1 )

- Total proportion that leaves or stays in patch $j$ : $\quad \sum_{i=1}^{n} m_{i j}$
$($ sum of column $j)$

■ $\therefore \sum_{i=1}^{n} m_{i j} \leq 1 \quad$ (every column sums to at most 1)
Could be $<1$ if some individuals are lost (die) while dispersing.

## Basic properties of dispersal matrices $\mathrm{M}=\left(m_{i j}\right)$

Discrete-time metapopulation model:

$$
x_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} F\left(x_{j}^{t}\right), \quad i=1,2, \ldots, n
$$

## Definition (No loss dispersal matrix)

An $n \times n$ matrix $\mathrm{M}=\left(m_{i j}\right)$ is said to be a no loss dispersal matrix if all its entries are non-negative ( $m_{i j} \geq 0$ for all $i$ and $j$ ) and its column sums are all 1, i.e.,

$$
\sum_{i=1}^{n} m_{i j}=1, \quad \text { for each } j=1, \ldots, n
$$

- The dispersal process is "conservative" in this case.
- A no loss dispersal matrix is also said to be "column stochastic".


## Notation for coherent states

Discrete-time metapopulation model:

$$
x_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} F\left(x_{j}^{t}\right), \quad i=1,2, \ldots, n
$$

- State at time $t$ is $\mathbf{x}^{t}=\left(x_{1}^{t}, \ldots, x_{n}^{t}\right) \in \mathbb{R}^{n}$.
- If state $\mathbf{x}$ is coherent, then for some $x \in \mathbb{R}$ we have

$$
\begin{aligned}
\mathbf{x} & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =(x, x, \ldots, x)=x(1,1, \ldots, 1)
\end{aligned}
$$

■ For convenience, define

$$
e=(1,1, \ldots, 1) \in \mathbb{R}^{n}
$$

so any coherent state can be written $x \boldsymbol{e}$, for some $x \in \mathbb{R}$.

## Constraint on sums of dispersal matrix M

## Lemma (Row sums are the same)

If all initially coherent states remain coherent then the row sums of the dispersal matrix are all the same.

## Proof.

Suppose initially coherent states remain coherent, i.e., $\mathbf{x}^{t}=a \boldsymbol{e} \Longrightarrow \mathbf{x}^{t+1}=b \boldsymbol{e}$ for some $b \in \mathbb{R}$.
Choose a such that $F(a) \neq 0$. Then

$$
\begin{aligned}
x_{i}^{t+1}=b & =\sum_{j=1}^{n} m_{i j} F\left(x_{j}^{t}\right)=\sum_{j=1}^{n} m_{i j} F(a)=F(a) \sum_{j=1}^{n} m_{i j} \\
& \Longrightarrow \sum_{j=1}^{n} m_{i j}=\frac{b}{F(a)} \quad \text { (independent of } i \text { ) }
\end{aligned}
$$

## Constraint on sums of dispersal matrix M

## Lemma (Row sums are all 1)

If every solution $\left\{x^{t}\right\}$ of the single patch map $F(x)$ yields a coherent solution $\left\{x^{t} e\right\}$ of the full map then the row sums of the dispersal matrix are all 1.

## Proof.

Suppose $\mathbf{x}^{t}=a \boldsymbol{e} \Longrightarrow \mathbf{x}^{t+1}=F(a) \boldsymbol{e}$ and $F(a) \neq 0$. Then

$$
\begin{aligned}
x_{i}^{t+1}=F(a) & =\sum_{j=1}^{n} m_{i j} F\left(x_{j}^{t}\right)=\sum_{j=1}^{n} m_{i j} F(a)=F(a) \sum_{j=1}^{n} m_{i j} \\
& \Longrightarrow \sum_{j=1}^{n} m_{i j}=1 \quad \text { (independent of } i \text { ) }
\end{aligned}
$$

