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What causes changes in frequency content over time?
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What causes changes in frequency content over time?
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What causes changes in frequency content over time?

Measles in New York City
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Mechanistic Epidemic Modelling: Principles

m Consider the biological mechanisms involved in disease
transmission and spread

m Model mechanisms and infer their effects
m Start as simple as possible!

m Rule out simple models by comparing results with observed
time series of incidence or mortality

m Add complexity one step at a time, so key mechanisms can be
identified

m ldeally converge on simplest possible model that can explain
observed patterns
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The SIR model: Flow Chart and Parameters

Susceptible Infectious Removed
Transmission Recovery
95 _ g
dt m Parameters:
m Transmission rate f
dl
- = 65[ — r}// m Recovery rate 7y
d (or Removal rate)
dR |
dt !
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The SIR model: Derived Parameters

Susceptible Infectious Removed
@ — D
Transmission Recovery

ds S/ m Derived Parameters:
E - _5 m Initial growth rate [ —~
dl m Mean infectious period %
—_ = 55/ — ’)// m Basic Reproduction

dt Number

R
dt K
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Basic SIR Model: Important Results

Epidemic occurs if and only if Rg > 1
Exact solution for phase portrait

Single epidemic, then disease disappears

Exact formula for final size as a function of Ry

Cannot explain diseases that persist

Cannot explain recurrent cycles of epidemics
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What are we missing?
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SEIR Model: flow chart

Susceptible Exposed Infectious Removed
(Infected but not infectious)

BI o 14
Transmission Becoming Recovery

infectious
m Introduces only one new parameter (o)

m Mean latent period (1/0) can often be estimated

m But... effect of inclusion of exposed class usually small
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What are we missing?
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SEIR Model with vital dynamics: flow chart

Transmission Becoming Recovery
infectious

New Parameters:
m Birth rate (v for natality)
m Death rate (u for mortality)
m Mean latent period (1/0)
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SEIR with vital dynamics and vaccination: flow chart

Birth f\/

Vaccination

Becoming Recovery

infectious

New Parameters:

m Birth rate (v for natality)

m Death rate (u for mortality)
m Mean latent period (1/0)
"

Proportion vaccinated (p)
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SEIR with vital dynamics and vaccination: Equations

Birth + 4
pv
v

Vaccination

Transmission Becoming

Death | w infectious

ds

dr v(1—p) =BS5Sl —puS m Birth rate (v for natality)

dE m Death rate (u for mortality)
ar BSI —oE — pE m Proportion vaccinated (p)

dl m Transmission rate (53)

— =cE —~l —pl )

dt m Mean latent period (1/0)
dR m Mean infectious period (1/7)
o VP +v — R
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Announcements

m Assignment 2: Due TODAY!
Do the Group contribution survey for Assignment 2 TODAY.

m Assignment 3 is posted.
Due Wednesday 28 February 2018, 11:30am.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm
m Location: BSB-B154

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html
https://surveys.mcmaster.ca/limesurvey/index.php/423598
http://davidearn.github.io/math4mb/assignments/assignments.html

SEIR with vital dynamics and vaccination: Analysis

L] Ro ?
m Biological derivation: (assuming v=ypand p=0)
1 B 1 11
=Bx ;5 X =~ >>max( 7)

[ ] Mathematlcal derivation:
Ro = 1 is stability boundary

m Final size 7 Not well defined (because of continuous source of
new susceptibles).
m Equilibria ?
m Disease Free Equilibrium (DFE)

m Endemic Equilibrium (EE)
m That's all folks.

m Periodic solutions 7 No.

m What else ? Chaos?
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SEIR with vital dynamics and vaccination: Results

m 3 Endemic Equilibrium <= Ro(1—p) >1
m EE is GAS in this case.
m DFE is GAS otherwise.

Eradication <= p>1— R%; (herd immunity)

m Smallpox: Ro ~4 = peit ~ 75%
m Measles: Rg ~ 20 = perit ~ 95%

Explains persistence of diseases (via births)

o . ? . .
No periodic solutions = no recurrent epidemics

GAS equilibrium = no periodic solutions and no chaos

Equilibrium approached by damped oscillations
= recurrent epidemics

m But observed epidemic patterns show undamped
oscillations. ..
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What are we missing?
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Demographic Stochasticity

Differential equations describe the expected behaviour in the
limit that the population size goes to infinity

How do dynamics differ in finite populations?

Re-cast the SEIR model as a stochastic process
(Continuous time Markov process)

Proving anything about stochastic epidemic models is
difficult, but we can easily simulate them and learn a lot

Standard algorithm for creating realizations of a stochastic

epidemic model attributed to Daniel T. Gillespie
Gillespie 1976, J. Comp. Phys. 22, 403-434

m Rather than rates of change of compartment sizes
consider event rates for transitions between disease states
m Finite number of individuals
m Assume event rates depend only on current state of population
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Gillespie Algorithm

m Let a1, a», ..., be the rates at which the various processes
occur, e.g.,

a; = birth rate,

a, = rate of going from susceptible to exposed,

as = the rate of going from infectious to removed (recovering),
etc.

Let ap be the overall event rate, ie., ag =) ; a;

(so average time between events = 1/ap).

m Assume time spent in any state is exponentially distributed
(transitions between states are “Poisson processes” )

.. Probability next event occurs in (t, t + dt) is age”2'dt

mlet u=1—e % Then u e [0,1] and du = age 'dt
= u is uniformly distributed in [0, 1].
m .. Get time t to next event by sampling u from uniform

distribution in [0, 1] and setting t = aio In

1
1—u-
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Gillespie Algorithm continued

m We now know the time t of the next event, but we must still
determine what type of event occurs at time t.

.. -
m Probability of event of type i is a—'
0

m .. Can easily determine type of event by sampling a point
from a uniform distribution on [0, ag]:

m Event is type i if the uniform deviate lies in the ith interval in
the following list:

[0,31), [31,31+82),..., [31+'--+8/,1731+"'+3,‘),...

m How do realizations of this process differ from the solution of
the deterministic (differential equation) model?
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