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What causes changes in frequency content over time?
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What causes changes in frequency content over time?

Measles in New York City

Krylova & Earn 2013, J. R. Soc. Interface 10, 20130098
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Mechanistic Epidemic Modelling: Principles

Consider the biological mechanisms involved in disease
transmission and spread

Model mechanisms and infer their effects

Start as simple as possible!

Rule out simple models by comparing results with observed
time series of incidence or mortality

Add complexity one step at a time, so key mechanisms can be
identified

Ideally converge on simplest possible model that can explain
observed patterns

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The SIR model: Flow Chart and Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

Parameters:
Transmission rate β

Recovery rate γ

(or Removal rate)
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The SIR model: Derived Parameters

Susceptible Infectious Removed

Transmission Recovery

βSI γ I

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

Derived Parameters:

Initial growth rate β − γ
Mean infectious period 1

γ

Basic Reproduction
Number

R0 =
β

γ
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Basic SIR Model: Important Results

Epidemic occurs if and only if R0 > 1

Exact solution for phase portrait

Single epidemic, then disease disappears

Exact formula for final size as a function of R0

Cannot explain diseases that persist

Cannot explain recurrent cycles of epidemics

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Mechanistic Modelling 11/24

What are we missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SEIR Model: flow chart

Introduces only one new parameter (σ)

Mean latent period (1/σ) can often be estimated

But. . . effect of inclusion of exposed class usually small
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What are we still missing?
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SEIR Model with vital dynamics: flow chart

New Parameters:

Birth rate (ν for natality)

Death rate (µ for mortality)

Mean latent period (1/σ)
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SEIR with vital dynamics and vaccination: flow chart

New Parameters:

Birth rate (ν for natality)

Death rate (µ for mortality)

Mean latent period (1/σ)

Proportion vaccinated (p)
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SEIR with vital dynamics and vaccination: Equations

dS

dt
= ν(1− p)− βSI − µS

dE

dt
= βSI − σE − µE

dI

dt
= σE − γI − µI

dR

dt
= νp + γI − µR

Birth rate (ν for natality)

Death rate (µ for mortality)

Proportion vaccinated (p)

Transmission rate (β)

Mean latent period (1/σ)

Mean infectious period (1/γ)
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Announcements

Assignment 2: Due TODAY!
Do the Group contribution survey for Assignment 2 TODAY.

Assignment 3 is posted.
Due Wednesday 28 February 2018, 11:30am.

Midterm test:
Date: Thursday 8 March 2018
Time: 7:00pm to 9:00pm
Location: BSB-B154

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://davidearn.github.io/math4mb/assignments/assignments.html
https://surveys.mcmaster.ca/limesurvey/index.php/423598
http://davidearn.github.io/math4mb/assignments/assignments.html
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SEIR with vital dynamics and vaccination: Analysis

R0 ?

Biological derivation: (assuming ν = µ and p = 0)
R0 = β × σ

σ+µ ×
1

γ+µ ' β
γ ∵ 1

µ � max
(
1
σ ,

1
γ

)
Mathematical derivation:
R0 = 1 is stability boundary

Final size ? Not well defined (because of continuous source of
new susceptibles).

Equilibria ?

Disease Free Equilibrium (DFE)
Endemic Equilibrium (EE)
That’s all folks.

Periodic solutions ? No.

What else ? Chaos?
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SEIR with vital dynamics and vaccination: Results

∃ Endemic Equilibrium ⇐⇒ R0(1− p) > 1

EE is GAS in this case.
DFE is GAS otherwise.

Eradication ⇐⇒ p > 1− 1
R0

(herd immunity)

Smallpox: R0 ∼ 4 =⇒ pcrit ∼ 75%
Measles: R0 ∼ 20 =⇒ pcrit ∼ 95%

Explains persistence of diseases (via births)

No periodic solutions
?

=⇒ no recurrent epidemics

GAS equilibrium =⇒ no periodic solutions and no chaos

Equilibrium approached by damped oscillations
=⇒ recurrent epidemics

But observed epidemic patterns show undamped
oscillations. . .
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What are we STILL missing?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Demographic Stochasticity

Differential equations describe the expected behaviour in the
limit that the population size goes to infinity

How do dynamics differ in finite populations?

Re-cast the SEIR model as a stochastic process
(Continuous time Markov process)

Proving anything about stochastic epidemic models is
difficult, but we can easily simulate them and learn a lot

Standard algorithm for creating realizations of a stochastic
epidemic model attributed to Daniel T. Gillespie

Gillespie 1976, J. Comp. Phys. 22, 403–434

Rather than rates of change of compartment sizes
consider event rates for transitions between disease states
Finite number of individuals
Assume event rates depend only on current state of population
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Gillespie Algorithm

Let a1, a2, . . . , be the rates at which the various processes
occur, e.g.,

a1 = birth rate,
a2 = rate of going from susceptible to exposed,
a3 = the rate of going from infectious to removed (recovering),
etc.

Let a0 be the overall event rate, i.e., a0 =
∑

i ai
(so average time between events = 1/a0).

Assume time spent in any state is exponentially distributed
(transitions between states are “Poisson processes”)

∴ Probability next event occurs in (t, t + dt) is a0e
−a0tdt

Let u = 1− e−a0t . Then u ∈ [0, 1] and du = a0e
−a0tdt

=⇒ u is uniformly distributed in [0, 1].

∴ Get time t to next event by sampling u from uniform
distribution in [0, 1] and setting t = 1

a0
ln 1

1−u .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Gillespie Algorithm continued

We now know the time t of the next event, but we must still
determine what type of event occurs at time t.

Probability of event of type i is
ai
a0

∴ Can easily determine type of event by sampling a point
from a uniform distribution on [0, a0]:

Event is type i if the uniform deviate lies in the ith interval in
the following list:

[0, a1), [a1, a1 + a2), . . . , [a1 + · · ·+ ai−1, a1 + · · ·+ ai ), . . .

How do realizations of this process differ from the solution of
the deterministic (differential equation) model?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology


