1 Epidemic Modelling Intro

#### 2 SI Model





Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

#### Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 1 Epidemic Modelling Intro Monday 7 January 2019

#### Where to find course information

- The course web page: http://www.math.mcmaster.ca/earn/4MB3
- Click on "Course information sheet".
- Download pdf or read online.
- Let's have a look now...

#### Who is NOT available at these times?

- Monday 9:30-10:30
- Wednesday 9:30-10:30
- Thursday 9:30-10:30
- Thursday 11:30-12:20
- Friday 12:30-1:20
- Friday 2:30-3:20

#### Group formation

#### Most work in this course will be done in groups.

- Attempt to form a group of 4 students (you and 3 others) no later than Wednesday night this week.
- After you have done your best to form a group of four, exactly one member of your group must e-mail the instructor no later than Wednesday night this week:
  - Include "Math 4MB3" and your proposed group name in the subject line.
  - Copy your message to all members of your proposed group so I have everyone's e-mail in the thread.
- If you were unable to form a group, then e-mail the instructor explaining what you did to try to form a group, and describe your skills/preferences. (*This is a last resort – please try your* best to form a group.)
- Instructor may change groups based on survey results.

You will be required to fill in online surveys during this course. Doing so in a timely manner contributes to your participation mark.

The first online survey has been posted:

- Go to the Surveys page on the course web site.
- Follow the link for Background and Group formation Survey.
- Complete the survey no later than 11:59pm this Wednesday (9 Jan 2019).
- It should take only  $\sim$  5 minutes.
- Note that surveys sometimes fail to save.
  - Type long answers into a file first and paste them into the survey. Then you won't get as frustrated if it fails to save.

#### Software

ASAP, install the software discussed on the Software page on the course web site:



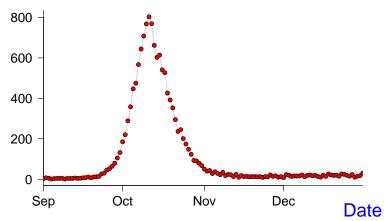
- If you have installation problems, please contact Ken Moyle <moylek@mcmaster.ca>, who created the Software page.
- Note: the Software page also contains some info about spell-checking and counting words in LATEX documents.

# Epidemic Modelling

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

#### Pneumonia & Influenza Mortality, Philadelphia, 1918

#### P&I Deaths



Develop a model that helps us understand the graph on the previous slide, based on mechanisms of disease spread.

- Only one variable is observed (P&I deaths per day) so construct a model containing only one variable.
- Think about how disease spreads and express your thoughts with mathematical notation.
- Derive a differential equation that models the process of disease transmission.
- Analyze the model and determine its strengths and weaknesses/limitations.

## Make (Biological) Assumptions Clear

- 1 Assume the disease is transmitted by contact between an infected individual and a susceptible individual.
- 2 Assume the latent period (delay between being infected and becoming infectious) is so short that it can be ignored (technically assume it is zero).
- 3 Assume all members of the population are identical and respond identically to the disease. In particular, all susceptible individuals are equally susceptible and all infected individuals are equally infectious.
- Assume the population size is fixed during the epidemic, *i.e.*, ignore births, migration, and deaths from causes other than the disease, and count individuals who have died from the disease as part of the population.

#### About Assumptions...

- Note that the first assumption on the previous slide is actually correct.
- The other assumptions are wrong, but are reasonable approximations.
- It is best to start as simple as possible and add complexity later, in order to:
  - obtain a model that actually succeeds in explaining the data with as few assumptions as possible;
  - check that inferences we draw from our model(s) are robust to the inclusion of more biological details/realism.

#### What variables should we include in our model?

- Independent variable: time (t)
- Dependent variable: Many options, e.g.,
  - Incidence (number of new infections per unit time)
  - Prevalence (total current number of infected individuals)
  - Death rate (number of deaths per unit time)
  - Death toll (number of deaths so far)
- So, what would be best?
- Not deaths, because whether or not you die may be unrelated to how much you transmit.
- But deaths are what we observe! What to do?!?
- Make another assumption...

#### Additional assumption(s)

- We actually want to know incidence or prevalence, but we observe deaths.
- Under what circumstances would daily deaths be a good estimate of incidence? (*i.e.*, What must we assume in addition to the assumptions we have already made.)
  - **5** Assume that the time from infection to death is exactly the same (a certain number of days) for every individual who dies.
  - 6 *Assume* that the probability of dying from the disease is the same for every individual who is infected.
- Then daily death counts are proportional to daily incidence a certain number of days in the past, *i.e.*, the "mortality curve" that we observe is a translated and scaled version of the "epidemic curve" (new cases per day).

#### So... what variables should we include in our model?

- Independent variable: time (t)
- Dependent variable: one of:
  - Incidence (number of new infections per unit time)
  - Prevalence (total current number of infected individuals)
- Which one?
- Choose prevalence (1) because anybody who is currently infectious can infect others, so it will probably be easier to formulate a transmission model based on prevalence. (Try not to lose sight of underlying biological mechanisms.)
- But our mortality curve is related to incidence, not prevalence ??! Argh. What to do?!?
- Let's work with prevalence and see how it works out. Maybe we'll be able to derive the incidence curve from a model based on prevalence.

#### Notational note

We use / for prevalence because prevalence is the number of <u>infected</u> individuals.

#### So, let's try to write down a model...

#### SI Model





## Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

## Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

#### Lecture 2 SI Model Wednesday 9 January 2019

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

#### Announcements

- We will meet tomorrow (Thursday @ 10:30am) as scheduled, but:
  - Going forward we will have a two-hour class on Mondays, 9:30–11:20am, in HH-410.
  - We will not have a class on Thursdays, but:
    - That will be a great time to meet with your group since you are all definitely available then.
- Assignment 1 is due when class starts on Monday 21 Jan 2019.
- Links to GitHub and Dropbox are posted on the Software page. There are many other tools for online collaboration, some specific to LATEX.
- Have you successfully installed the required software?

#### A first (naïve) attempt at an epidemic model

- Variables: time t, prevalence I(t)
- How does I increase?
- Start with  $I_0$  infected individuals at time t = 0. What happens for t > 0.
- Let B = average number of contacts with susceptible individuals that lead to a new infective per unit time per infective in the population (and suppose B is constant). Then

$$I(t + \Delta t) \simeq I(t) + B I(t) \Delta t$$

• In the limit  $\Delta t 
ightarrow 0$ , we have

$$\frac{dI}{dt} = BI \implies I(t) = I_0 e^{Bt}$$

#### 20/46

#### Beware: implicit assumptions that should be explicit

- Ignored discrete nature of individuals when taking limit.
- Ignored finite infectious periods!
  - Sometimes it isn't obvious that we've made some assumptions until after we see what the model predicts.

#### 21/46

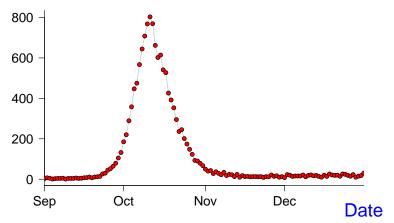
#### How can we tell if our model is good?

- Compare model predictions with data.
- What is the best way to do that?
- Depends on what predictions we're trying to test.
- Model predicts exponential growth. How should we test that prediction?
- Transforming the data might help.



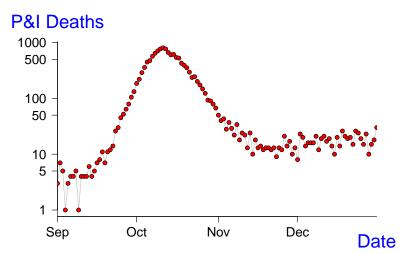
Instructor: David Earn

#### **P&I** Deaths



SI Model

#### Logarithmic scale: P&I Mortality, Philadelphia, 1918



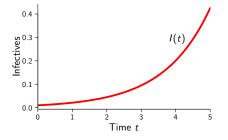
How can we estimate the model parameters,  $I_0$  and B, from the P&I data?

- Fit a straight line through the part of the logarithmic mortality curve that looks straight.
- The slope of the line is B.
- The "intercept" is  $\log I_0$ .
  - "Intercept" in quotes because we need to define t = 0 as the time when exponential growth begins.
- Note: Parameter estimation is, in general, a very tricky business and deserves a great deal of attention (beyond the scope of this course).

#### Naïve epidemic model

- Variables: time t, prevalence I(t)
- Parameter B = average number of contacts with susceptible individuals that lead to a new infective per unit time per infective in the population

$$\frac{dI}{dt} = BI \implies I(t) = I_0 e^{Bt}$$



#### Naïve model: the good and the bad

Good:

- Makes clear predictions
- Predictions can be tested
- Estimation of parameter (B) is easy
  - B is the slope of the straight portion of the epidemic curve on the log scale. (Why?)
  - Remember we are imagining that the mortality curve is equivalent to the epidemic curve after translation and scaling.
  - Why do translation and scaling not affect the estimate of B? Assignment 2...

Bad:

- Model is consistent only with exponential growth phase.
- Absurd long-term prediction: unbounded growth in I(t)
  - Implicitly assumed that population size  $N = \infty$ .

#### How can we improve our model?

- Insist that population size is finite  $(N < \infty)$ .
- Keep track of both infectives I(t) and susceptibles S(t).
- Assume individuals who are *not infected* are susceptible:

$$I(t) + S(t) = N =$$
constant.

#### New model parameter(s)?

- B = average number of contacts with susceptible individuals that lead to a new infective per unit time per infective
- In the naïve model, we assumed B = constant. Is B really constant?
- *B* depends on how many susceptibles there are.

$$\blacksquare B = \beta S(t)$$

- β = average number of contacts between susceptibles and infectives that lead to a new infective per unit time per infective per susceptible
- $\beta$  is called the **transmission rate**.

#### Revised epidemic model: "SI model"

$$rac{dI}{dt} = eta S(t) I(t)$$

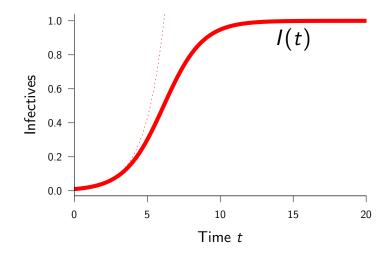
Two state variables. One equation. Problem? No:

$$\frac{dS}{dt} = -\beta S(t)I(t)$$

• But  $S(t) = N - I(t) \implies I(t)$  is still the only variable:  $\frac{dI}{dt} = \beta I(N - I)$ 

- Is this a better model?
- What does it predict?

#### SI model: Example solution



#### SI Model

#### SI model: Analysis

• We can find the exact solution. How?

$$I(t) = \frac{I_0 e^{N\beta t}}{1 + (I_0/N)(e^{N\beta t} - 1)}$$

But exact solution is not particularly enlightening.

Qualitative analysis:

- As I grows, growth rate slows. Why?
   Fewer and fewer susceptibles to infect.
- Asymptotic behaviour? Equilibria? Periodic orbits? (periodic orbit = recurrent epidemics)
- (Non-trivial) periodic orbits impossible in one dimension (existence-uniqueness theorem).
- Consider equilibria...

## SI model: Equilibrium Analysis

$$\frac{dI}{dt} = \beta I(N-I), \qquad I \in [0, N]$$

- Two equilibria:
  - I = 0 Disease Free Equilibrium (**DFE**)
  - I = N Endemic Equilibrium (**EE**)

Stability:

- DFE is unstable ( $0 < I < N \implies dI/dt > 0$ )
- EE is locally asymptotically stable (LAS)
- EE is globally asymptotically stable (**GAS**) (stability of EE follows from  $0 < I < N \implies dI/dt > 0$ ) (GAS requires a little more analysis... Assignment 1)
- Note: In one dimension, global analysis always easy.
   In higher dimensions, often try to find Lyapunov function.
   (Lyapunov function for EE of SI model?... Assignment 1)
- Conclusions identical for any  $\beta > 0$ .

#### SI model: Biological Inferences

- For any transmission rate  $\beta$ :
  - Initially, exponential growth of cases.
  - Eventually, convergence to equilibrium (EE) at which everyone in the population is infective. hmmm...
- Is this model better than our first naïve model? YES.
  - Still correctly predict initial exponential growth.
  - Can match epidemic curve for longer (up to the peak).
  - Does not predict absurd unbounded growth in infective population.
  - But this model cannot explain the decline of the epidemic.
- What should we do? Two obvious options:
  - **1** Get depressed, drop the course.
  - **2** Try to improve the model.



Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

## Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 3 SIR Model Thursday 10 January 2019

#### Motivating data: 1918 flu in Philadelphia

- Mortality curve (linear scale)
- Mortality curve (log scale)

#### How can we improve on the SI model?

- Include a key biological fact: Individuals do not stay infectious with flu forever
- Either they recover and are immune thereafter, or they die (doesn't matter which) (well, maybe to them it does)
- Why don't we care if someone recovers or dies? (*i.e.*, Why doesn't it affect our dynamical inferences?)
- Because in either case the individual is *removed* from the transmission process, hence cannot affect the future pattern of the epidemic.

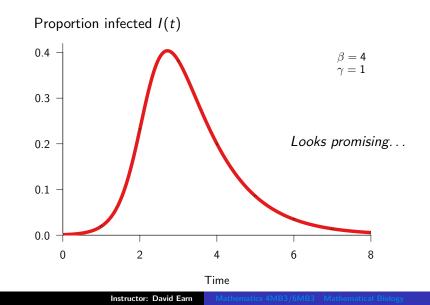
#### The SIR model

Introduce new class of removed individuals:

- R(t) = number of individuals who have either recovered and are now immune or have died
- Let γ = rate of removal from the infective class (via recovery or death)

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

Note: dS/dt + dI/dt + dR/dt = 0 ⇒ S + I + R = N = constant
 Convenient to rescale variables by N and interpret S, I, R as proportions of the population in each disease state.

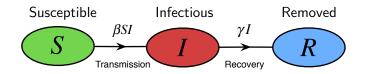


#### The SIR model: Flow Chart and Parameters



$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

- Parameters:
  - Transmission rate β
  - Recovery rate  $\gamma$ (or Removal rate)



$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$
$$\frac{dR}{dt} = \gamma I$$

#### Derived Parameters:

- $\begin{tabular}{ll} \begin{tabular}{ll} Initial growth rate & \beta-\gamma \\ \end{tabular}$
- Mean infectious period  $\frac{1}{\gamma}$
- Basic Reproduction Number

$$\mathcal{R}_0 = \frac{\beta}{\gamma}$$

#### The initial growth rate

- How do we calculate the initial growth rate from our model?
- Consider change in prevalence initially (when  $I \ll 1$ ):

$$\begin{aligned} \frac{dI}{dt} &= \beta SI - \gamma I \\ &= (\beta S - \gamma)I \\ &\approx (\beta - \gamma)I & \text{if } S \sim 1 \text{ initially.} \end{aligned}$$

- ... Initially  $I(t) \approx I_0 e^{(\beta-\gamma)t}$ .
- ... Initial slope of logged prevalence curve is  $\beta \gamma$ .

#### The mean infectious period

- How do we calculate the mean infectious period from our model?
- Suppose at time 0 there are I<sub>0</sub> infectious individuals, and suppose we can prevent contact with susceptibles.
- The equation for / then simplifies to

$$\frac{dI}{dt} = -\gamma I , \qquad I(0) = I_0$$

We can solve this immediately to find

$$I(t) = I_0 e^{-\gamma t}$$

#### The mean infectious period, continued...

- Thus, after time t, the number of people still infectious is reduced by a factor  $e^{-\gamma t}$
- *i.e.*, the proportion of individuals who have an infectious period shorter than t is  $1 e^{-\gamma t}$
- *i.e.*, the cumulative distribution of the infectious period is  $C(t) = 1 e^{-\gamma t}$ .
- Therefore, the probability density of the infectious period is  $p(t) = C'(t) = \frac{d}{dt}(1 e^{-\gamma t}) = \gamma e^{-\gamma t}$
- The mean of this exponential probability distribution is  $\int_0^\infty t \, p(t) \, dt = \int_0^\infty t \, \gamma e^{-\gamma t} \, dt = \frac{1}{\gamma}$

#### The SIR model: Derived parameters

#### The basic reproduction number $\mathcal{R}_0$

$$\begin{aligned} \mathcal{R}_0 &= \beta \cdot \frac{1}{\gamma} \\ &= (\text{transmission rate}) \\ &\times (\text{mean infectious period}) \end{aligned}$$

- $\mathcal{R}_0$  is dimensionless
- R<sub>0</sub> is the average number of secondary cases caused by a primary case (in a wholly susceptible population).
- We must have  $\mathcal{R}_0 > 1$  to have an epidemic. Why?

$$\begin{array}{l} \bullet \ \frac{dl}{dt} = \beta Sl - \gamma l = (\mathcal{R}_0 S - 1)\gamma l \\ \bullet \therefore \mathcal{R}_0 \leq 1 \implies \frac{dl}{dt} \leq 0 \text{ for all } (S, l) \in [0, 1]^2 \implies \text{ no growth} \end{array}$$

## The SIR model: Analysis (biological well-posedness)

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dI}{dt} = \beta SI - \gamma I$$

Be careful: Is this a sensible biological model?

■ We need S, I and R all non-negative at all times.

Does 
$$0 \le S(0) + I(0) \le 1$$
 imply  
 $0 \le S(t) + I(t) \le 1$  for all  $t > 0$ ?

$$S = 0 \implies S' = 0, \text{ so}$$
  
$$S(0) \ge 0 \implies S(t) \ge 0 \forall t > 0.$$

• 
$$I = 0 \implies I' = 0$$
, so  
 $I(0) \ge 0 \implies I(t) \ge 0 \ \forall t > 0$ .

•  $(S+I)' = S' + I' = -\gamma I \le 0$  $\implies$  S + I is always non-increasing  $\implies$   $S(t) + I(t) \leq S(0) + I(0) \leq 1.$ 

## The SIR model: Analysis (equilibria etc.)

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

- Equilibria:
  - $(S,I)=(S_0,0)$  for any  $S_0\in[0,1]$ 
    - Continuum of equilibria.
    - Does this make sense?
    - Biological meaning of equilibria?

#### Linearization:

• 
$$DF_{(S,I)} = \begin{pmatrix} -\beta I & -\beta S \\ \beta I & \beta S - \gamma \end{pmatrix}$$

$$DF_{(S_0,0)} = \begin{pmatrix} 0 & -\beta S_0 \\ 0 & \beta S_0 - \gamma \end{pmatrix}$$

All equilibria are non-hyperbolic.

#### Periodic orbits:

- $\bullet (S+I)' = -\gamma I$ 
  - $\implies$  no periodic orbits. Why?
    - If I(0) = 0 then equilibrium.
    - If I(0) > 0 then (S + I)' < 0, so cannot increase back to initial state.</p>
- Also follows from Index Theorem (cannot enclose any equilibria).