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Announcements

You should have received an invitation to do the contributions
survey for Assignment 1. Please do it TODAY (e.g., during
the mid-class break).

Don’t stress about the ratings about each other’s
contributions. The issue is whether some group members did
not pull their weight. If somebody didn’t try and others had
to pick up the slack, that person should be penalized. I will
not penalize somebody because they tried but felt they didn’t
contribute as much to the final document as they could have.
Do try to even out the work across the assignments.

Make sure everyone in your group gets a chance to be in
control of the LATEX for one assignment.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://davidearn.github.io/math4mb/surveys.html
https://davidearn.github.io/math4mb/surveys.html
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More Announcements!

Assignment 2:
Due Monday 7 October 2019 by e-mail before class.

Midterm test:
Date: Monday 4 November 2019
Time: 11:30am–1:30pm
Location: in class, ETB-237

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://davidearn.github.io/math4mb/assignments/assignments.html
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Attendance

Who is here?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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P&I Mortality, Philadelphia, 1918
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SARS in 2003 (Worldwide)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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SARS in 2003 (Toronto)

N = 249 (of 250 reported)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Some SARS Facts

High case fatality
1918 flu < 3%
SARS > 10%

Long hospital stays
Mean time from admission to discharge or death:
∼ 25 days in Hong Kong

8098 probable cases, 774 deaths

How bad would it have been if it had not been controlled?

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The Black Death in London, England, 1348–1349
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Bill of Mortality, 26 Sept to 3 Oct 1665

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Mortality Bills are typically handwritten

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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But handwriting is usually very clear

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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But handwriting is usually very clear

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The Great Plague of London, 1665
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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The Great Plague of London, 1665
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data Motivating Data – Single epidemics 18/93

London Plague of 1593
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Plague of 1603
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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London Plague of 1625
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Weekly Deaths from Plague in London, 1592–1666
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Weekly Plague in London, 1640–1648
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Some Plague Facts

Plague epidemics recorded from Roman times to early 1900s.
& 1/3 Europe’s population died in “Black Death” of 1348

∼ 300 years for the population to reach the same level.
Recently (2011) established (at McMaster!) that the
pathogen that caused The Black Death was Yersinia pestis

[Bos et al. 2011, Nature 478, 506–510]

More recently (2014) established (again at McMaster!) that
the pathogen that caused The Plague of Justinian (541–543
AD) was Yersinia pestis

[Wagner et al. 2014, Lancet Infectious Diseases 14, 319–326]

Y. pestis still a concern?
Yes: Rodent reservoir, antibiotic-resistant strains, bioterrorism
Spatial data for any plagues? Yes, for London in 1665. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Visualization of spatial structure of Great Plague

GIS encoding of parish boundaries
Overlay parish boundaries on more modern map for reference
Colour parishes as they become infected
Is there evidence for spatial spread or was the spatial pattern
random?
DE low-tech animation. . .
CBC high-tech animation. . .

The Nature of Things, 21 August 2014.
http://www.cbc.ca/natureofthings/episodes/
secrets-in-the-bones-the-hunt-for-the-black-death-killer

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer
http://www.cbc.ca/natureofthings/episodes/secrets-in-the-bones-the-hunt-for-the-black-death-killer
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Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor
the patterns of respiratory illness, over-the-counter drug
use, and social contact within the McMaster community.
There are no risks to filling out this survey, and your par-
ticipation is voluntary. You do not need to answer any
questions that make you uncomfortable, and all informa-
tion provided will be kept strictly confidential. Thanks for
participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://surveys.mcmaster.ca/limesurvey/index.php/893454
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Visualization of entire course of the Great Plague

What happenned after initial spatial spread?

Visualize full spatial epidemic structure

Show magnitude of epidemic in each parish with cylinder.

Epidemic Visualization (EpiVis) software by Junling Ma.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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P&I mortality in U.S.A., 1910–1998

Earn, Dushoff & Levin 2002, Trends in Ecology and Evolution 17, 334–340

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Influenza Incidence Patterns (lab confirmed)

Geographic Patterns Types and Subtypes

Earn, Dushoff & Levin 2002, Trends in Ecology and Evolution 17, 334–340

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Influenza Evolution

Molecular
phylogenetic
reconstruction of
influenza A/H3N2
evolution,
1985–1996
(Fitch et al. 1997)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Mumps in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Chicken Pox in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Childhood diseases in New York City, 1928–1972
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles in Ontario, 1904–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Chicken Pox in Ontario, 1924–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Rubella in Ontario, 1924–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Whooping Cough in Ontario, 1904–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Childhood diseases in Ontario, 1904–1989
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Ontario Disease Notification Data

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data Influenza; Childhood Infectious Diseases 40/93

Dominion Bureau of Statistics Disease Notification Data

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Recurrent epidemics of childhood infections

Childhood diseases in New York City, 1928–1972

Childhood diseases in Ontario, 1904–1989

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles incidence in England and Wales, 1944–1995
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Measles incidence in England and Wales, 1944–1995
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Why study measles epidemics?
In 2017, ∼ 110, 000 deaths
from measles
A major cause of
vaccine-preventable deaths.
Potential impact in
developed countries during
vaccine scares (e.g., MMR
scare in UK in 1990s).

Understand past patterns
Predict future patterns
Manipulate future patterns
Develop vaccination strategy
that can. . .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://www.who.int/news-room/fact-sheets/detail/measles
https://www.who.int/news-room/fact-sheets/detail/measles


Epidemic Data Recurrent epidemics of childhood infections 45/93

Other reasons to model infectious disease epidemics

Mathematical models make hypotheses and inferences precise
Give better advice to policymakers
Make better predictions

Host-pathogen dynamics are important aspects of ecosystem
dynamics

Infectious disease models more likely to be successful than
predator-prey models

Excellent data for human infectious diseases
Models can be tested!

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Modelling population dynamics of childhood infections

The basic SIR model cannot explain recurrent epidemics.

What should we do?. . . The usual options:
1 Get depressed, drop the course.
2 Keep developing models until we can explain recurrent

epidemics.

First, let’s talk about tools that allow us to make our
questions about time series data more precise.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data Recurrent epidemics of childhood infections 47/93

Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor
the patterns of respiratory illness, over-the-counter drug
use, and social contact within the McMaster community.
There are no risks to filling out this survey, and your par-
ticipation is voluntary. You do not need to answer any
questions that make you uncomfortable, and all informa-
tion provided will be kept strictly confidential. Thanks for
participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://surveys.mcmaster.ca/limesurvey/index.php/893454
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Epidemic Data
Analysis

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Time Plots of Temporal Epidemic Patterns
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Time Plots of Transformed Data
Reveal unobvious aspects of time series
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Times Plots of Smoothed Data

Reveal trends clouded by noise or seasonality

Moving Average:

xt →
1

2a + 1

a∑
i=−a

xt+i

Replace original data points xt with averages of nearby points.

Linear filter:
xt →

∞∑
i=−∞

λi xt+i

Generalization of moving average.
Weights λi can be nonlinear functions of i .

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Times Plots of Smoothed Data
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Times Plots of Smoothed Data
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Times Plots of Smoothed Data
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Correlation

Recurrent epidemics =⇒ number of cases now is correlated
with number of cases in the past and the future.

Given N pairs of observations of different quantities,
{(xi , yi ) : i = 1, . . . ,N}, the correlation coefficient is defined
to be

r =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2∑N

i=1(yi − ȳ)2

where x̄ and ȳ are the means of {xi} and {yi}, respectively.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology



Epidemic Data Autocorrelation and Power Spectrum 56/93

Correlation

Properties of the correlation coefficient:
−1 ≤ r ≤ 1 (Proof? Cauchy-Schwarz inequality)
r = 1 ⇐⇒ all points lie on a line with positive slope
(“complete positive correlation”)
r = −1 ⇐⇒ all points lie on a line with negative slope
(“complete negative correlation”)
r ' 0 =⇒ “uncorrelated”
Interpretation: r 2 is the proportion of the variance in y
explained by a linear function of x .

Derivations and discussions:
MathWorld on r 2, Wikipedia on r 2

Wikipedia on general coefficient of determination

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
http://mathworld.wolfram.com/CorrelationCoefficient.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Coefficient_of_determination
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Autocorrelation

Given a single sequence of observations {xt : t = 1, . . . ,N},
we can compute the correlation of each observation with the
observation k time steps in the future.

Thus, we consider the pairs of observations
{(xt , xk+t) : t = 1, . . . ,N − k} and define the autocorrelation
coefficient at lag k to be

rk =
∑N−k

t=1 (xt − x̄1,N−k)(xk+t − x̄k+1,N)√∑N−k
t=1 (xt − x̄1,N−k)2∑N−k

t=1 (xk+t − x̄k+1,N)2

where x̄1,N−k and x̄k+1,N are the means of first and last N − k
observations, respectively.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Autocorrelation

If number of observations N is large and lag k � N then

rk '
∑N−k

t=1 (xt − x̄)(xk+t − x̄)∑N
t=1(xt − x̄)2

Approximation of rk is worse for larger lags k

Plot of autocorrelation rk as a function of lag k is called the
correlogram.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Correlogram
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Peaks in correlogram =⇒ periodicities in original time series.
Correlograms of temporal segments are often informative.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Correlogram: exact vs. approximate rk
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Spectral Density

Can we compute the dominant periods in the time series?
(Rather than estimating them by eye from the correlogram.)

Express the time series as a Fourier series:

xt = a0 +

(N/2)−1∑
p=1

(
ap cosωpt + bp sinωpt

)+ aN/2 cos πt ,

where ωp = 2πp/N.

Compute the Fourier coefficients {ap}, {bp} by taking inner
products with cosωpt and sinωpt.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Fourier_series
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Spectral Density

Fourier coefficients of xt are:

a0 = x̄ = 1
N
∑

t
xt ,

ap = 2
N
∑

t
xt cosωpt , bp = 2

N
∑

t
xt sinωpt ,

aN/2 = 1
N
∑

t
(−1)txt ,

where sum is over observation times.

Estimated power spectral density (PSD) at frequency ωp is?:

I(ωp) = N
4π
(
a2

p + b2
p
)

?The normalization by N/4π is the convention chosen by Chatfield (2004, “Analysis of Time Series: An
Introduction”). Other normalization conventions are also in common use.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Spectral_density
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
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Please consider. . .

5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor
the patterns of respiratory illness, over-the-counter drug
use, and social contact within the McMaster community.
There are no risks to filling out this survey, and your par-
ticipation is voluntary. You do not need to answer any
questions that make you uncomfortable, and all informa-
tion provided will be kept strictly confidential. Thanks for
participating.

–Dr. Marek Smieja (Infectious Diseases)

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://surveys.mcmaster.ca/limesurvey/index.php/893454
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Spectral Density

There are many different ways to express the power spectral
density (aka power spectrum).

Most common/useful equivalence is that the power spectrum
is the discrete Fourier transform of the correlogram:

I(ωp) = 1
π

(
r0 + 2

N−1∑
k=1

rk cosωpk
)

Plot of estimated power spectrum as a function of frequency
ωp is called the frequency periodogram or just the
periodogram.

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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Spectral Density
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Spectral Density
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density of Temporal Segments
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Spectral Density Properties

Periodogram is discrete Fourier transform of correlogram

Same information in correlogram and periodogram

Periodogram usually easier to interpret

In , calculate power spectrum with spectrum()

The power spectrum I(ωp) partitions the variance in the time
series with respect to frequency ωp.

Parseval’s theorem implies 1
N
∑

t(xt − x̄)2 = 1
2πN

∑
p>0 I(ωp).

But 1
N
∑

t(xt − x̄)2 = Var{xt}, hence I(ωp)/(2πN) is the
proportion of the variance in the time series associated with
period 2π/ωp. [For details, see Chatfield (2004).]

Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology

https://en.wikipedia.org/wiki/Parseval's_theorem
https://en.wikipedia.org/wiki/Variance
https://www.crcpress.com/The-Analysis-of-Time-Series-An-Introduction-Sixth-Edition/Chatfield/p/book/9781584883173
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Basic Time Series Analysis of Epidemic Data
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Instructor: David Earn Mathematics 4MB3/6MB3 Mathematical Biology


