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Announcments

m Assignment 3 due today.
m Do group contribution survey TODAY!!

m Assignment 4 due Wednesday 14 March 2018, 11:30am.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm
m Location: BSB-B154

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html
https://surveys.mcmaster.ca/limesurvey2/index.php/777818
http://davidearn.github.io/math4mb/assignments/assignments.html

Spatial Epidemic Dynamics
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Space: the final frontier.
These are the voyages of the Starship Enterprise.
Her ongoing mission: to explore strange new worlds,

to seek out new life-forms and new civilizations;

to boldly go where no one has gone before. BETAR TREK

Instructor: David Earn



Something to think about

All of our analysis has been of temporal patterns of epidemics

m What about spatial patterns?

What problems are suggested by observed spatial epidemic
patterns?

Can spatial epidemic data suggest improved strategies for
control?

Can we reduce the eradication threshold below peit = 1 — Rio?

Instructor: David Earn



Measles and Whooping Cough in 60 UK cities

Measles

Whooping
Cough

Rohani, Earn & Grenfell (1999) Science 286, 968-971

Instructor: David Earn



Better Control? Eradication?

m The term-time forced SEIR model successfully predicts past
patterns of epidemics of childhood diseases

m Can we manipulate epidemics predictably so as to increase
probability of eradication?

m Can we eradicate measles?

Instructor: David Earn



|dea for eradicating measles

m Try to re-synchronize measles epidemics in the UK and,
moreover, synchronize measles epidemics worldwide:
synchrony is good

m Devise new vaccination strategy that tends to synchronize. ..
m Avoid spatially structured epidemics. ..
m Time to think about the mathematics of synchrony. ..

m But analytical theory of synchrony in a periodically forced
system of differential equations is mathematically
demanding. ..

So let's consider a much simpler biological model. . .

Instructor: David Earn



The
Logistic Map




Logistic Map

Simplest non-trivial discrete time population model for a
single species (with non-overlapping generations) in a single
habitat patch.

Time: t =0,1,2,3,...
State: x € [0,1] (population density)

Population density at time t is x*. Solutions are sequences:

xt1 = F(x?) for some reproduction function F(x).

For logistic map: F(x) = rx(1 — x), so x'™! = rxt(1 — x?t).
x = [r(1 - xt)|x* = ris maximum fecundity (which is
achieved in limit of very small population density).

What kinds of dynamics are possible for the Logistic Map?

Instructor: David Earn



Logistic Map Time Series, r =0.5

xtHl = rxt(1—xt), r=05 xo=0.63662
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Instructor: David Earn



Logistic Map Time Series, r =0.9

xtHl = xt(1 - xt), r=09, xo=0.63662
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Instructor: David Earn



Logistic Map Time Series, r =1
xHl = rxf(1-x*), r=1, x9=0.63662
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Instructor: David Earn



Logistic Map Time Series,

r=1.1

xtHl = rxt(1—-x%), r=11 x9=0.63662
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Logistic Map Time Series, r=1.5

xtHl = rxt(1—x%), r=15xo=0.63662
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Logistic Map Time Series, r =2

xtHl = rxf(1—-x*), r=2, x9=0.31831
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Instructor: David Earn



Logistic Map Time Series, r =2.5

xtHl = rxf(1—-x*), r=25 xy=0.31831
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Logistic Map Time Series, r =3

xHl = rxf(1-x*), r=3, xp=0.31831
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Instructor: David Earn



Logistic Map Time Series, r
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Logistic Map Time Series, r = 3.75
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xHl = rxf(1 - x*), r=3.75 xp=0.31831
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Logistic Map Summary

m Time series show:

m r <1 — Extinction.

m 1 <r <3 = Persistence at equilibrium.

m r >3 = period doubling cascade to chaos, then appearance
of cycles of all possible lengths, and more chaos, ...

m How can we summarize this in a diagram?

m Bifurcation diagram (wrt r).
m Ignore transient behaviour: just show attractor.

Instructor: David Earn



Logistic Map, F(x) = rx(1 — x),

Instructor: David Earn



Logistic Map, F(x) = rx(1 — x

3.0 3.2 3.4 3.6 3.8 4.0
r

Instructor: David Earn



Logistic Map, F(x
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Instructor: David Earn
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Announcments

m Assignment 3.
m Thanks for doing the group contribution survey.

m Assignment 4 due Wednesday 14 March 2018, 11:30am.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm
m Location: BSB-B154

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html
https://surveys.mcmaster.ca/limesurvey2/index.php/777818
http://davidearn.github.io/math4mb/assignments/assignments.html

Logistic Map as a Tool to Investigate Synchrony

Very simple single-patch model: only one state variable.

Displays all kinds of dynamics from GAS equilibrium, to
periodic orbits, to chaos.

m This was extremely surprising to population biologists and
mathematicians in the 1970s.
May RM (1976) “Simple mathematical models with very complicated dynamics” Nature 261, 459-467

m Easier to work with logistic map as single patch dynamics
than SIR or SEIR model.

Can still understand how synchrony works conceptually.

m Now we are ready for the ...
... Mathematics of Synchrony ...

Instructor: David Earn



Mathematics of Synchrony

m System comprised of isolated patches
e.g., cities, labelled i =1,...,n

m State of system in patch / specified by x;
e.g., Xj = (Sia Ei7 Ii7 RI)

m Connectivity of patches specified by a dispersal matrix
M = (mj)

m System is coherent (perfectly synchronous) if the state is the
same in all patches
[e,X] =Xo="--+=Xp

Instructor: David Earn



lllustrative example: logistic metapopulation

m Single patch model: xt+1 = F(x%)

m Reproduction function: F(x) = rx(1 — x)

1

n
m Multi-patch model:  x!*1 = Z m;; F(x;)
j=1
X1t+1 mi1 s Mg F(Xf)

Xt My -+ Mpn F(x})
where M = (m;;) is dispersal matrix.

m Colour coding of indices:

m row indices are red
m column indices are cyan

Instructor: David Earn



Basic properties of dispersal matrices M = (my;)

Discrete-time metapopulation model:
n
1 .
xit :Zm;jF(xJ-t), i=1,2,...,n.
j=1

m m;; = proportion of population in patch j
that disperses to patch i.

m..0<m; <1 foralliandj
(each mj; is non-negative and at most 1)

n
m Total proportion that leaves or stays in patch j: Z m;;
(sum of column j) i=1

n
m Z m;; <1 (every column sums to at most 1)
i=1

Could be < 1 if some individuals are lost (die) while dispersing.

Instructor: David Earn



Basic properties of dispersal matrices M = (my;)

Discrete-time metapopulation model:
n
t+1 -
XI-+ :Zm,-jF(xjt), i=1,2,...,n.
Jj=1

Definition (No loss dispersal matrix)

An n x n matrix M = (mj;) is said to be a no loss dispersal
matrix if all its entries are non-negative (m;; > 0 for all i and /)
and its column sums are all 1, i.e,,

n
ZmU:l’ foreach j=1,...,n.
i=1

m The dispersal process is “conservative” in this case.
m A no loss dispersal matrix is also said to be “column stochastic”.

Instructor: David Earn



Notation for coherent states

Discrete-time metapopulation model:
n
1 .
XI-H' :Zm,-jF(xf), i=1,2,...,n.
j=1

m State at time t is x" = (x{,...,x}) € R".

m If state x is coherent, then for some x € R we have

X = (x1,x2,...,Xn)
=(x,x,...,x)=x(1,1,...,1)

m For convenience, define
e=(1,1,...,1) e R"
so any coherent state can be written xe, for some x € R.

Instructor: David Earn



Constraint on sums of dispersal matrix M

Lemma (Row sums are the same)

If all initially coherent states remain coherent then the row sums of
the dispersal matrix are all the same.

Proof

Suppose initially coherent states remain coherent, i.e.,
x! = ae = x't! = be for some b € R.
Choose a such that F(a) #0. Then

—bme,J Zmu Zmu

= Z iy = F(a) (independent of /) .

Instructor: David Earn



Constraint on sums of dispersal matrix M

Lemma (Row sums are all 1)

If every solution {x'} of the single patch map F(x) yields a
coherent solution {x*e} of the full map then the row sums of the
dispersal matrix are all 1.

Suppose x! = ae = x‘*1 = F(a)e and F(a) # 0. Then

n n n

Xt =F(a) =Y myF(xf) = myF(a) = F(a) Y my
= j=1 j=1
— Z iy = 1 (independent of /)
Jj=1 []

Instructor: David Earn



Simple examples of no loss dispersal matrices

m Equal coupling: a proportion m from each patch disperses
uniformly among the other n — 1 patches:

m_:{l—m i=j
Do m/(n=1) i #

m Nearest-neighbour coupling: a proportion m go to the two
nearest patches:

1-m i=j
mj; = m/2 i:j—lorj+1(m0d n)
0 otherwise

m Real dispersal patterns generally between these two extremes

Instructor: David Earn



Key Question

m Can we find conditions on the dispersal matrix M, and/or the
single patch reproduction function F, that guarantee (or
preclude) coherence asymptotically (as t — o0)?

m If so, then this sort of analysis should help to identify
synchronizing vaccination strategies.

Instructor: David Earn



Logistic Metapopulation Simulation (r =1, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.2)

n=10, r=2, m=02 A=0.778
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Instructor: David Earn



Logistic Metapopulation Simulation (r =2, m = 0.02)

n=10, r=2, m=0.02, XA=0.978
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Logistic Metapopulation Simulation (r =2, m = 0.02)

n=10, r=2, m=0.02, XA=0.978
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Logistic Metapopulation Simulation (r =2, m = 0)
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Logistic Metapopulation Simulation (r =2, m = 0)
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Logistic Metapopulation Simulation (r = 3.83, m = 0.2)
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Logistic Metapopulation Simulation (r = 3.83, m = 0.2)
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Instructor: David Earn
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Announcments

m Assignment 4 due Wednesday 14 March 2018, 11:30am.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm

m Location: BSB-B154

m Invigilator/TA: Tyler Meadows

m No instructor in class on Friday 9 March 2018.
Perfect time to meet with your group about your project!

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html

You should be thinking about your Project. ..

m Due dates were wrong: project document has been revised:
m Preliminary draft of project (and of your personal project
notebook) due Wednesday 28 March 2018, 11:30am.
m Final version is due Monday 9 April 2018, 11:30am.

m Remember your group must give an oral presentation of your
project as well (in the last couple of classes).

m Classes after the midterm are NOT optional. Your group is
expected to meet in class and take advantage of the
instructor’s presence to solve issues with your project. This is
part of your participation mark.

m Project Notebook template is posted on project page.

m Movie night?


http://davidearn.github.io/math4mb/project/project.html
http://davidearn.github.io/math4mb/project/project.html

Midterm Test

Student Name: Student Number:

MATHEMATICS 4MB3/6MB3
Midterm Test, Thursday 8 March 2018

Special Instructions and Notes:

(i) This test has 12 pages. Verify that your copy is complete. Note that the final page is
blank to provide additional space if needed.

(ii) Clearly write your name and student number at the top of each page.
(iii) Answer all questions in the space provided.

v 18 possible to obtain a total o marks. There are multiple choice
iv) Tt i ibl btai tal of 50 ks. Tl 10 multiple choi
questions (2 marks each) and 10 short answer questions (total of 30 marks).

(v) For multiple choice questions, circle only one answer.
(vi) No calculators, notes, or aids of any kind are permitted.
(vii) PHAC refers to the Public Health Agency of Canada.

Instructor: David Earn



Midterm Test

m The test will cover everything from lectures and
assignments/solutions before the test.

m Material connected with time series analysis and
synchrony/coherence will occur only in multiple choice
questions.

m You are assumed to be comfortable with:

m Elementary algebra, including finding the eigenvalues of 2 x 2
matrices.

m Stability analyses of differential equations.

m Finding Ro by biological and mathematical [p(FV~1)]
methods.

m Converting flow charts or verbal descriptions into
compartmental ODE models.

m You will be presented with scenarios including graphs, and
asked to write explanations that would be understandable by
people at PHAC.

Instructor: David Earn



Last time. ..

Logistic metapopulation model

Notion of coherence

m No-loss dispersal matrix M: column sums are all 1

To retain homogeneous solutions: row sums are all 1

Examples of connectivity matrices
m equal coupling
m nearest-neighbour coupling on a ring

m Logistic Metapopulation Simulations (10 patches)

mr=1 m=02 mr=35 m=0.2 mr=—4 m=0.1
mr=2 m=02 mr=375 m=0.2 mr=4 m=0.2
mr=2 m=0.02 mr=383 m=0.2 mr=4 m=03
mr=2m=0 mr=383 m=0.3 mr=4 m=04
mr=32 m=0.2 mr=—383 m=0.4 mr=—4 m=05

Instructor: David Earn



Quantities that affect coherence

Degree of spatial coupling:

m Determined by dispersal matrix M = (m;).

m Do we need to worry about about all matrix entries?
n? parameters?

m Are eigenvalues enough?

m Dominant eigenvalue is always 1. Why?
m Next slide. ..

m Coherence is affected by magnitude |A| of
subdominant eigenvalue \.

Instructor: David Earn



Dominant eigenvalue of dispersal matrix M is always 1

Definition (Positive vector)

A vector is positive if each of its components is positive.

Definition (Dominant eignvalue)

A is a dominant eigenvalue of a matrix A if no other eigenvalue
of A has larger magnitude.

Theorem

Let A be a nonnegative matrix. If A has a positive eigenvector
then the corresponding eigenvalue ) is nonnegative and dominant,
ie., p(A) =\

Proof.
See Horn & Johnson (2013) Matrix Analysis, Corollary 8.1.30, p.522. [J

Instructor: David Earn




Dominant eigenvalue of dispersal matrix M is always 1

Corollary

Consider a discrete-time metapopulation map,
1 .
xit :Zm,-jF(xjt), i=1,...,n. (©)

If solutions of the single patch system, x**1 = F(xt), yield
coherent solutions of (V) then 1 is a dominant eigenvalue of M.

Proof.

We found earlier that if solutions of the single patch map yield
coherent solutions of (V) then > ; m; =1 for all i.

This is equivalent to the statement that Me = e, i.e., 1 is an
eigenvalue of M with eigenvector e.

But e is a positive vector, hence by the lemma on the previous
slide, 1 is a dominant eigenvalue of M. ]

Instructor: David Earn



Quantities that affect coherence

Maximum “reproductive rate”:

m Maximum fecundity = maximum reproduction per individual
per time step.

m For (single patch) logistic map, F(x) = rx(1 — x), maximum
fecundity is r.  Note: r = max, (F'(x)).

m Maximum fecundity for any one-dimensional single species
map Fis r = max, (F'(x)).

m More generally, single patch map can be multi-dimensional:
could represent multiple species (e.g., predator, prey, ...)
and/or multiple states per species (e.g., S, E, I, R).

m We can think of r = maxy ||DxF|| as the maximum
“reproductive rate” for a multi-dimensional single-patch map.

m r is relevant to coherence.

Instructor: David Earn



Quantities that affect coherence

Average “reproductive rate”:

| Mean reproductlve rate” over T time steps is
+ 2050 1D« Fl.

m Geometric mean turns out to be more important:

T-1 YT
[TIDFI| = [IDxF I 1D Fll-+ || Dy FI[ 1T
t=0
= [HDXOF'DMF Dyr 1FH]1/T
1/T
= {2
1T

1
- Lour]

T-1
1T 11ox.Fll

t=0

Instructor: David Earn
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Quantities that affect coherence

Average “reproductive rate”:

m We actually want the average over the entire trajectory, so we
would like to consider

T-1
1
T —_ il
Jim, 108 |27 = i 7o | IT P
~ im Z g 1Dy, FIl

m But this limit may not exist! So consider

Xy, = limsup — T Z log || Dx, F| -

T—oo

which always exists if | DgF|| is bounded
(true for us because we assume r = maxy || DxF || exists).

Instructor: David Earn



Quantities that affect coherence: Summary

m Degree of spatial coupling:
Magnitude |\| of subdominant eigenvalue A of dispersal
matrix M

m Maximum “reproductive rate”:

r = max || DyF||
X

m Average “reproductive rate”:

1 T-1
X = limsup > log || D, Fll -
— 00 t=0

This is called the maximum (Lyapunov) characteristic
exponent of the single patch map.

Instructor: David Earn



Criteria for asymptotic coherence

m Coherence inevitable:
Global asymptotic coherence: system will eventually
synchronize regardless of initial conditions:
riAl <1
m Coherence possible:
Local asymptotic coherence: system will synchronize if
sufficiently close to a coherent attractor:

eX|A\| <1 ie, x+log|A <0

Note: x is the same for “almost all” initial states x
(non-trivial to prove)
m Coherence impossible:

X + log |A| >0

Earn, Levin & Rohani (2000) Science 290, 1360-1364

Instructor: David Earn
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Announcments

m Assignment 4 due Wednesday 14 March 2018, 11:30am.

m You should now have received the required data files by e-mail.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm

m Location: BSB-B154

m Invigilator/TA: Tyler Meadows

m No instructor in class on Friday 9 March 2018.
Perfect time to meet with your group about your project!

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html

Last time. ..

m Quantities that affect coherence

m Coherence criteria

Instructor: David Earn



Global asymptotic coherence (GAC) for equal coupling

Theorem: r|A\| <1 = GAC.

Proof in case of equal coupling:

Dispersal matrix: Subdominant eigenvalue:
1_ .
mjj = m I J A=1-— ( ! )m
m/(n—1) i#] n—1
General map: Equal coupling case in terms of \:
n
X = mijF(x) = AF(xi) + (1= A) (F(x))
j=1

Instructor: David Earn



Global asymptotic coherence (GAC) for equal coupling

Difference in density between any two patches at next iteration:
Xj = X = A[F(x;) = F(xd)]

= AF'(&)(xi — xk) (Mean Value Theorem)

Hence |x! — x; | < r|A||xi — xk| because r = max,|F'(x)|.

Therefore, r|\| <1 implies |x; — xx| — 0.
Q.E.D.

Note: Actually true for very general connectivity matrices M and
multi-dimensional single-patch dynamics F(x).
Earn & Levin (2006) PNAS 103, 3968-3971
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Theory of local asymptotic coherence (LAC)

m Requires measure theory (e.g., Math 4A03), which allows us
to make precise statements like "y is the same for almost all
initial states”.

m More significant theoretically than practically, because it
yields only possibility rather than probability of coherence.

m Quasi-global theory attempts to bridge the gap between
“probability = 1" and “probability > 0".

McCluskey & Earn (2011) J. Math. Biol. 62, 509-541

Instructor: David Earn



Application of simple coherence criteria

10 patch logistic metapopulation

I rlAl <1 (coherence inevitable)
I eX|A| > 1 (coherence impossible)

Equal coupling . lNef—lrels'( r:eigl;hblor IcotrplilngI

Dispersal fraction m

Maximum fecundity r Maximum fecundity r

Earn, Levin & Rohani (2000) Science 290, 1360-1364
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Comments on coherence theory

Global theory is limited in applicability:

m Nice theorem guarantees global asymptotic coherence (GAC)

Earn & Levin (2006) PNAS 103, 3968-3971

m But hypotheses quite restrictive

Local theory is limited in practical power:
m Applies very generally and aids understanding

m But coherence possible doesn't tell how probable

Quasi-global theory promising:

m Show asymptotic approach to coherent manifold from
anywhere nearby (rather than just near attractor)

m Via Lozinskii measures

McCluskey & Earn (2011) J. Math. Biol. 62, 509-541

Instructor: David Earn



Coherence in “numerical experiments” (simulations)

10 patch logistic metapopulation

m Systematically explore representative set of initial conditions
and determine probability of coherence within some tolerance,
within some specified time

m e.g., coherence to within 10% within 10 iterations

Equal coupling Nearest neighbor coupling
1 1
0.5 0.5
3 - e ———
s.srm 3.5r TR 06 08

Earn, Levin & Rohani (2000) Science 290, 1360-1364

m Extremely demanding computationally. . .

Instructor: David Earn



Connecting coherence to extinction

m Strictly deterministic simulations reveal conditions (model
parameter regions) that tend to lead to coherence.

m Coherence # extinction, but intuitively predict:

higher probability of coherence —
e higher probability of global extinction

e smaller difference between probabilities
of local and global extinction

m Test these predictions by adding global noise (randomly
occurring events that affect all patches equally) to the
deterministic simulations.

m Global noise models environmental stochasticity (e.g.,
weather), which presents a large risk of global extinction
because the noise is correlated across all patches.

Instructor: David Earn



Effects of global events that affect all patches equally

10 patch logistic metapopulation subject to ‘“global noise”

0.04

Locallglobal probability of extinction
Probabilitity of coherence

A T L 0 |....|..."=0
25 3 35 4 25 3 35 4

Maximum fecundity r Maximum fecundity r

Earn, Levin & Rohani (2000) Science 290, 1360-1364
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