- 19 Space
- 20 Space II

21 Space III

22 Space IV

Space 2/93

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 19 Space Wednesday 28 February 2018 Space 3/93

Announcments

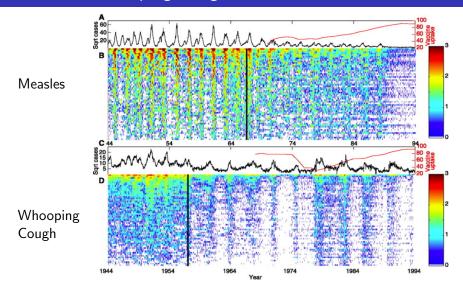
- Assignment 3 due today.
 - Do group contribution survey TODAY!!
- Assignment 4 due Wednesday 14 March 2018, 11:30am.
- Midterm test:
 - Date: Thursday 8 March 2018
 - *Time:* 7:00pm to 9:00pm
 - Location: BSB-B154

Space 4/93

Spatial Epidemic Dynamics

- All of our analysis has been of temporal patterns of epidemics
- What about spatial patterns?
- What problems are suggested by observed spatial epidemic patterns?
- Can spatial epidemic data suggest improved strategies for control?
- lacksquare Can we reduce the eradication threshold below $p_{\mathrm{crit}}=1-rac{1}{\mathcal{R}_0}$?

Measles and Whooping Cough in 60 UK cities



Rohani, Earn & Grenfell (1999) Science 286, 968-971

Space 7/93

Better Control? Eradication?

- The term-time forced SEIR model successfully predicts past patterns of epidemics of childhood diseases
- Can we manipulate epidemics predictably so as to increase probability of eradication?
- Can we eradicate measles?

Space 8/93

Idea for eradicating measles

- Try to re-synchronize measles epidemics in the UK and, moreover, synchronize measles epidemics worldwide: synchrony is good
- Devise new vaccination strategy that tends to synchronize. . .
- Avoid spatially structured epidemics. . .
- Time to think about the mathematics of synchrony...
- But analytical theory of synchrony in a periodically forced system of differential equations is mathematically demanding...
- So let's consider a much simpler biological model...

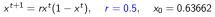
The Logistic Map

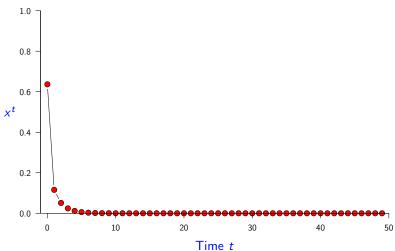
Logistic Map

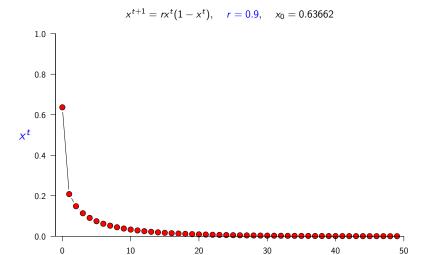
- Simplest non-trivial discrete time population model for a single species (with non-overlapping generations) in a single habitat patch.
- Time: t = 0, 1, 2, 3, ...
- State: $x \in [0,1]$ (population density)
- Population density at time t is x^t . Solutions are sequences:

$$x^0, x^1, x^2, \dots$$

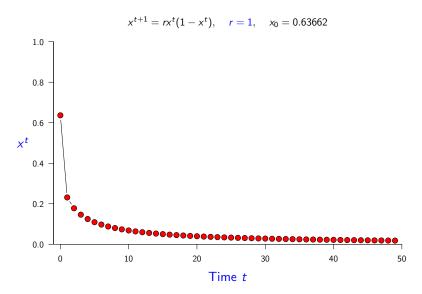
- $x^{t+1} = F(x^t)$ for some *reproduction function* F(x).
- For logistic map: F(x) = rx(1-x), so $x^{t+1} = rx^t(1-x^t)$. $x^{t+1} = [r(1-x^t)]x^t \implies r$ is maximum fecundity (which is achieved in limit of very small population density).
- What kinds of dynamics are possible for the Logistic Map?

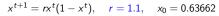


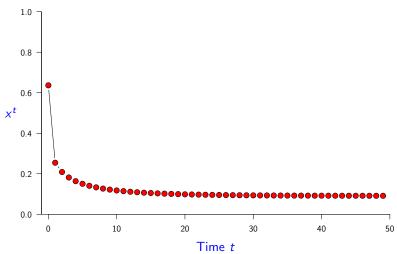


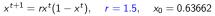


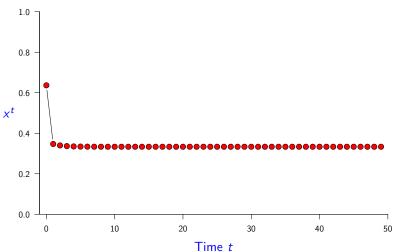
Time t

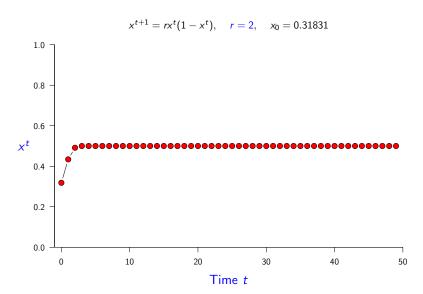




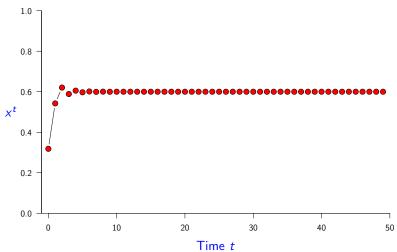


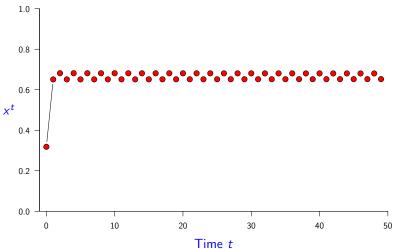


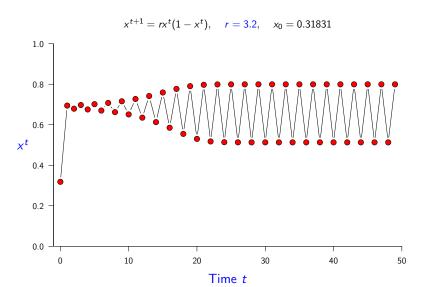


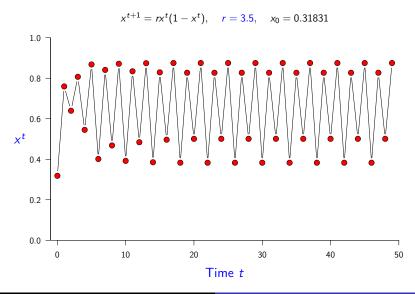


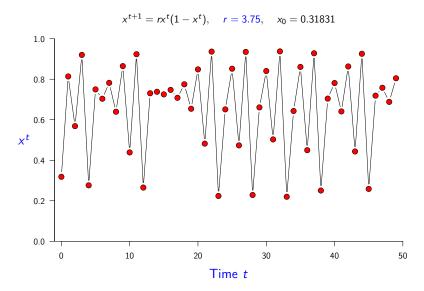


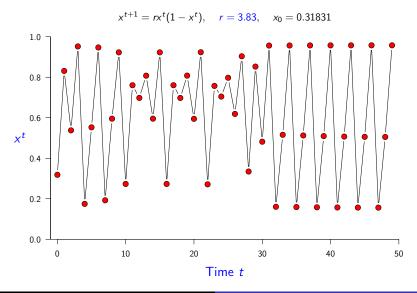


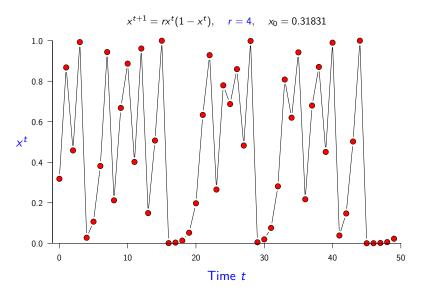








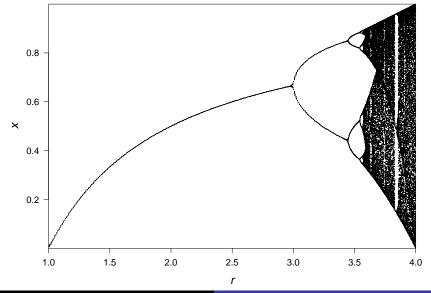




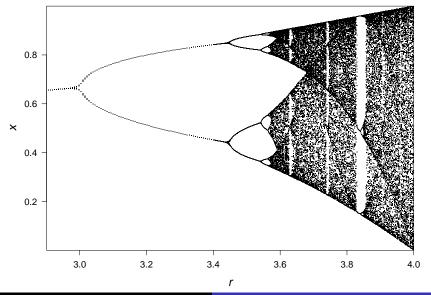
Logistic Map Summary

- Time series show:
 - $r < 1 \implies Extinction.$
 - $1 < r < 3 \implies$ Persistence at equilibrium.
 - $r > 3 \implies$ period doubling cascade to chaos, then appearance of cycles of all possible lengths, and more chaos, ...
- How can we summarize this in a diagram?
 - Bifurcation diagram (wrt r).
 - Ignore transient behaviour: just show attractor.

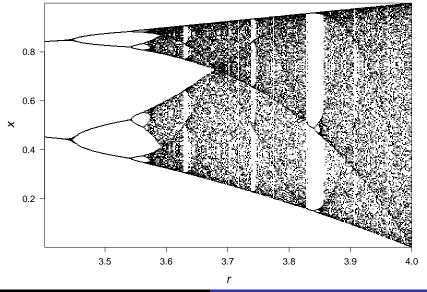
Logistic Map, F(x) = rx(1-x), $1 \le r \le 4$



Logistic Map, F(x) = rx(1-x), $2.9 \le r \le 4$



Logistic Map, F(x) = rx(1-x), $3.4 \le r \le 4$



Space II 28/93

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 20 Space II Friday 2 March 2018 Space II 29/93

Announcments

- Assignment 3.
 - Thanks for doing the group contribution survey.
- Assignment 4 due Wednesday 14 March 2018, 11:30am.
- Midterm test:
 - Date: Thursday 8 March 2018
 - *Time:* 7:00pm to 9:00pm
 - Location: BSB-B154

Space II 30/93

Logistic Map as a Tool to Investigate Synchrony

- Very simple single-patch model: only one state variable.
- Displays all kinds of dynamics from GAS equilibrium, to periodic orbits, to chaos.
 - This was *extremely surprising* to population biologists and mathematicians in the 1970s.

```
May RM (1976) "Simple mathematical models with very complicated dynamics" Nature 261, 459-467
```

- Easier to work with logistic map as single patch dynamics than SIR or SEIR model.
- Can still understand how synchrony works conceptually.
- Now we are ready for the ...

 ... Mathematics of Synchrony ...

Mathematics of Synchrony

- System comprised of isolated *patches* e.g., cities, labelled i = 1, ..., n
- State of system in patch i specified by \mathbf{x}_i e.g., $\mathbf{x}_i = (S_i, E_i, I_i, R_i)$
- Connectivity of patches specified by a *dispersal matrix* $M = (m_{ij})$
- System is coherent (perfectly synchronous) if the state is the same in all patches
 i.e., x₁ = x₂ = ··· = x_n

Space II Synchrony 32/93

- Single patch model: $x^{t+1} = F(x^t)$
- Reproduction function: F(x) = rx(1-x)
- Multi-patch model: $x_i^{t+1} = \sum_{j=1}^n m_{ij} F(x_j^t)$

i.e.,
$$\begin{pmatrix} x_1^{t+1} \\ \vdots \\ x_n^{t+1} \end{pmatrix} = \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{n1} & \cdots & m_{nn} \end{pmatrix} \begin{pmatrix} F(x_1^t) \\ \vdots \\ F(x_n^t) \end{pmatrix}$$

where $M = (m_{ij})$ is dispersal matrix.

- Colour coding of indices:
 - row indices are red
 - column indices are cyan

Basic properties of dispersal matrices $M=(m_{ij})$

Discrete-time *metapopulation* model:

$$x_i^{t+1} = \sum_{j=1}^n m_{ij} F(x_j^t), \qquad i = 1, 2, \dots, n.$$

- $m_{ij} = proportion$ of population in patch j that disperses to patch i.
- $0 \le m_{ij} \le 1$ for all i and j (each m_{ij} is non-negative and at most 1)
- Total proportion that leaves or stays in patch j: $\sum_{i=1}^{m} m_{ij}$ (sum of column j)

Could be < 1 if some individuals are lost (die) while dispersing.

Basic properties of dispersal matrices $M = (m_{ij})$

Discrete-time *metapopulation* model:

$$x_i^{t+1} = \sum_{j=1}^n m_{ij} F(x_j^t), \qquad i = 1, 2, \dots, n.$$

Definition (No loss dispersal matrix)

An $n \times n$ matrix $M = (m_{ij})$ is said to be a **no loss dispersal** matrix if all its entries are non-negative $(m_{ij} \ge 0 \text{ for all } i \text{ and } j)$ and its column sums are all 1, *i.e.*,

$$\sum_{i=1}^n m_{ij} = 1, \qquad \text{for each } j = 1, \ldots, n.$$

- The dispersal process is "conservative" in this case.
- A no loss dispersal matrix is also said to be "column stochastic".

Notation for coherent states

Discrete-time *metapopulation* model:

$$x_i^{t+1} = \sum_{j=1}^n m_{ij} F(x_j^t), \qquad i = 1, 2, \dots, n.$$

- State at time t is $\mathbf{x}^t = (x_1^t, \dots, x_n^t) \in \mathbb{R}^n$.
- If state **x** is *coherent*, then for some $x \in \mathbb{R}$ we have

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

= $(x, x, \dots, x) = x(1, 1, \dots, 1)$

■ For convenience, define

$$e = (1, 1, \ldots, 1) \in \mathbb{R}^n$$

so any coherent state can be written xe, for some $x \in \mathbb{R}$.

Constraint on row sums of dispersal matrix M

Lemma (Row sums are the same)

If all initially coherent states remain coherent then the row sums of the dispersal matrix are all the same.

Proof.

Suppose initially coherent states remain coherent, i.e.,

$$\mathbf{x}^t = \mathbf{a}e \implies \mathbf{x}^{t+1} = \mathbf{b}e$$
 for some $\mathbf{b} \in \mathbb{R}$.

Choose a such that $F(a) \neq 0$. Then

$$x_i^{t+1} = b = \sum_{j=1}^n m_{ij} F(x_j^t) = \sum_{j=1}^n m_{ij} F(a) = F(a) \sum_{j=1}^n m_{ij}$$

$$\implies \sum_{j=1}^n m_{ij} = \frac{b}{F(a)} \quad \text{(independent of } i\text{)}$$

Space II Synchrony 37/93

Constraint on row sums of dispersal matrix M

Lemma (Row sums are all 1)

If every solution $\{x^t\}$ of the single patch map F(x) yields a coherent solution $\{x^te\}$ of the full map then the row sums of the dispersal matrix are all 1.

Proof.

Suppose $\mathbf{x}^t = \mathbf{a}e \implies \mathbf{x}^{t+1} = F(\mathbf{a})e$ and $F(\mathbf{a}) \neq 0$. Then

$$\begin{aligned} x_{i}^{t+1} &= F(\mathbf{a}) = \sum_{j=1}^{n} m_{ij} F(x_{j}^{t}) = \sum_{j=1}^{n} m_{ij} F(\mathbf{a}) = F(\mathbf{a}) \sum_{j=1}^{n} m_{ij} \\ &\implies \sum_{j=1}^{n} m_{ij} = 1 \qquad \text{(independent of } \mathbf{i}\text{)} \end{aligned}$$

Simple examples of no loss dispersal matrices

■ Equal coupling: a proportion m from each patch disperses uniformly among the other n-1 patches:

$$m_{ij} = \begin{cases} 1 - m & i = j \\ m/(n-1) & i \neq j \end{cases}$$

■ *Nearest-neighbour coupling*: a proportion *m* go to the two nearest patches:

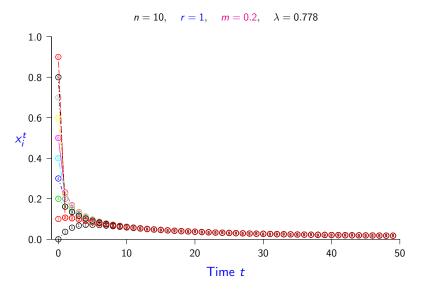
$$m_{ij} = egin{cases} 1-m & \emph{\emph{i}} = \emph{\emph{j}} \\ m/2 & \emph{\emph{i}} = \emph{\emph{j}} - 1 \text{ or } \emph{\emph{j}} + 1 \text{ (mod } \emph{\emph{n}}) \\ 0 & \text{otherwise} \end{cases}$$

Real dispersal patterns generally between these two extremes

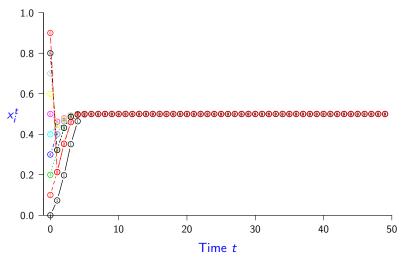
- Can we find conditions on the dispersal matrix M, and/or the single patch reproduction function F, that guarantee (or preclude) coherence asymptotically (as $t \to \infty$)?
 - If so, then this sort of analysis should help to identify synchronizing vaccination strategies.

Space II

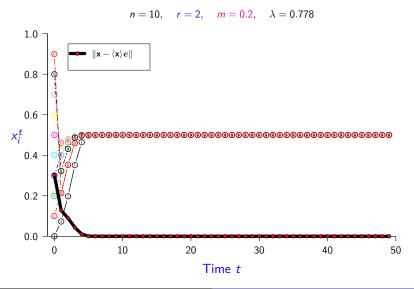
Logistic Metapopulation Simulation (r = 1, m = 0.2)



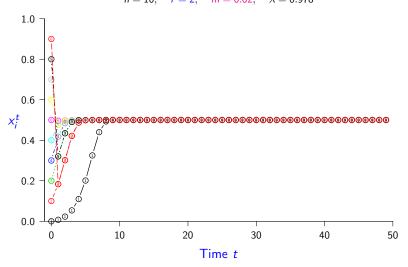
Logistic Metapopulation Simulation (r = 2, m = 0.2)



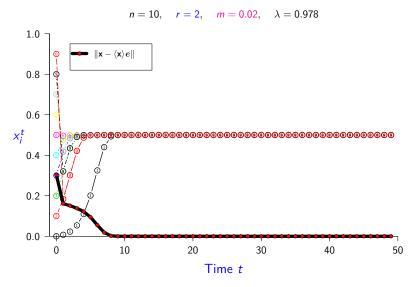
Logistic Metapopulation Simulation (r = 2, m = 0.2)



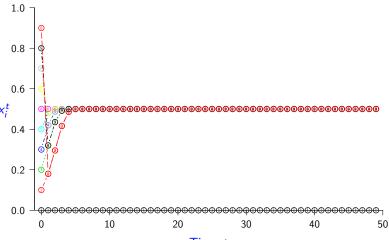
$$n = 10, \quad r = 2, \quad m = 0.02, \quad \lambda = 0.978$$

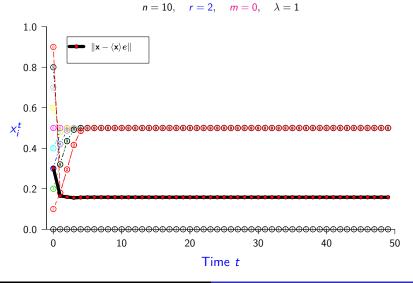


Logistic Metapopulation Simulation (r = 2, m = 0.02)

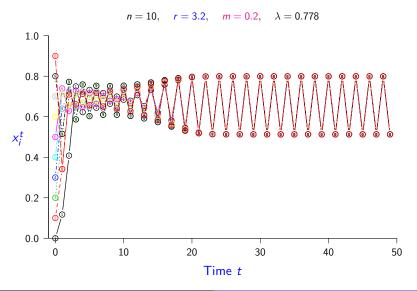


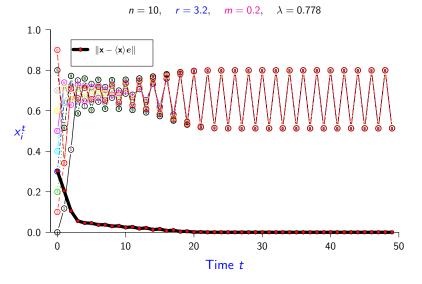
$n=10, \quad r=2, \quad m=0, \quad \lambda=1$



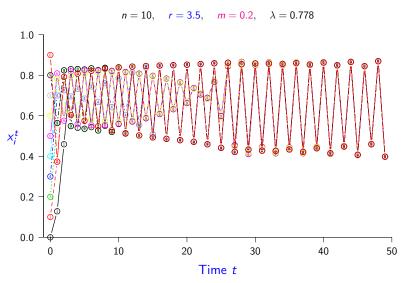


Logistic Metapopulation Simulation (r = 3.2, m = 0.2)

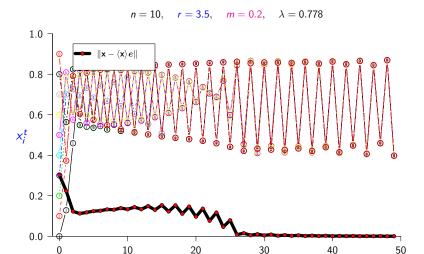




Logistic Metapopulation Simulation (r = 3.5, m = 0.2)

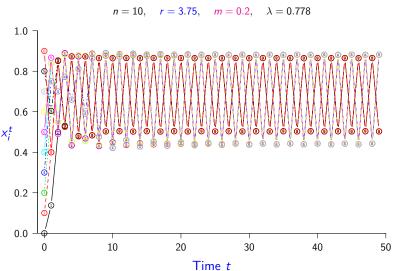


Logistic Metapopulation Simulation (r = 3.5, m = 0.2)



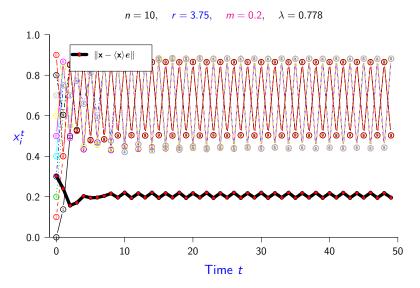
Time t

Logistic Metapopulation Simulation (r = 3.75, m = 0.2)

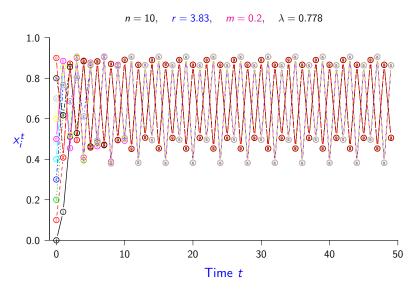


pace II

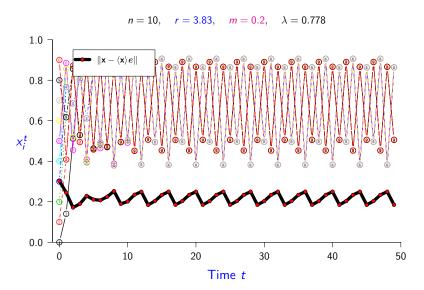
Logistic Metapopulation Simulation (r = 3.75, m = 0.2)



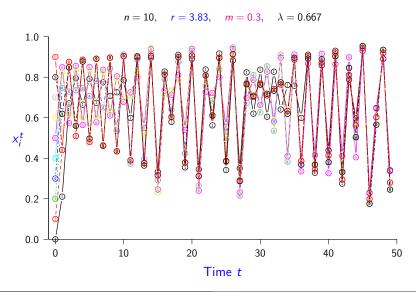
Logistic Metapopulation Simulation (r = 3.83, m = 0.2)



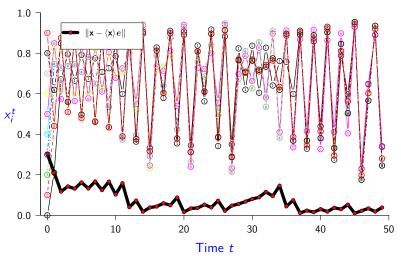
Logistic Metapopulation Simulation (r = 3.83, m = 0.2)



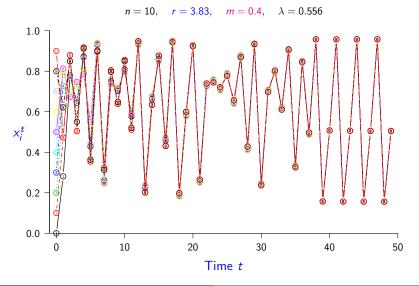
Logistic Metapopulation Simulation (r = 3.83, m = 0.3)



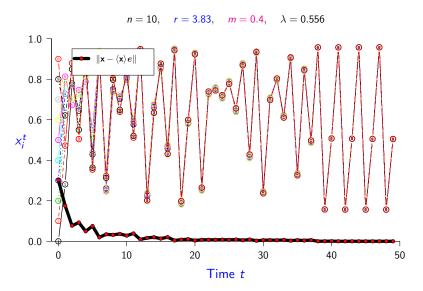
Logistic Metapopulation Simulation (r = 3.83, m = 0.3)



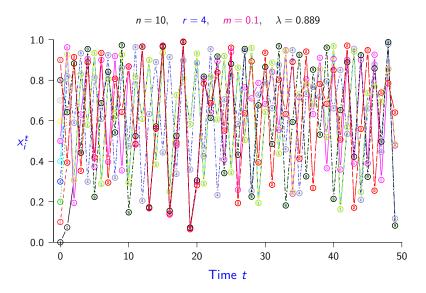




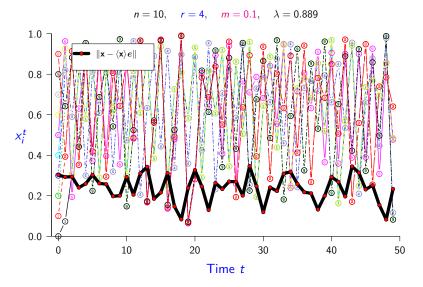
Logistic Metapopulation Simulation (r = 3.83, m = 0.4)

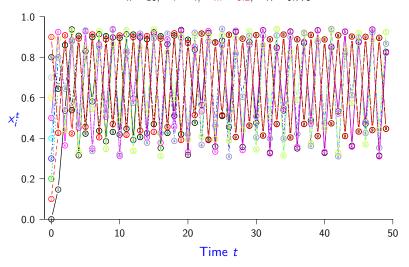


Logistic Metapopulation Simulation (r = 4, m = 0.1)

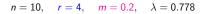


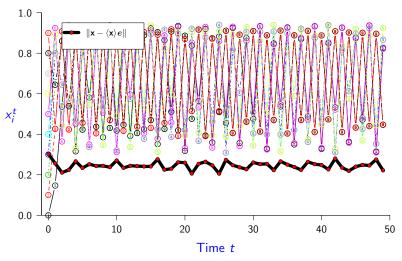
Logistic Metapopulation Simulation (r = 4, m = 0.1)



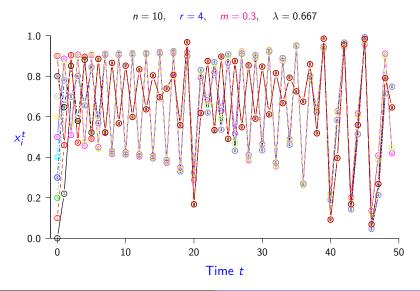


Logistic Metapopulation Simulation (r = 4, m = 0.2)

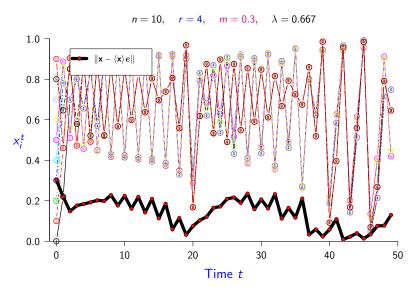




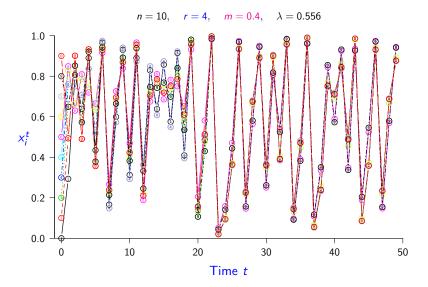
Logistic Metapopulation Simulation (r = 4, m = 0.3)



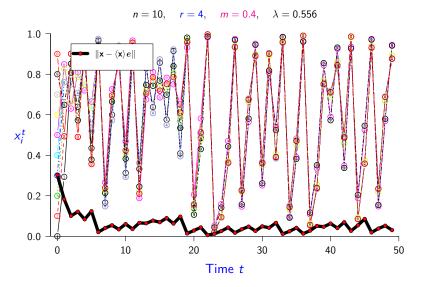
Logistic Metapopulation Simulation (r = 4, m = 0.3)



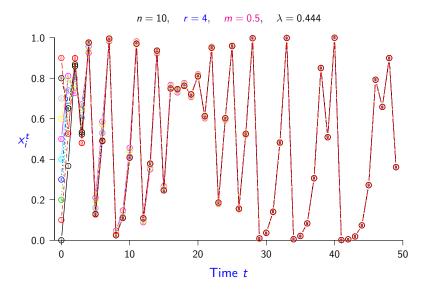
Logistic Metapopulation Simulation (r = 4, m = 0.4)



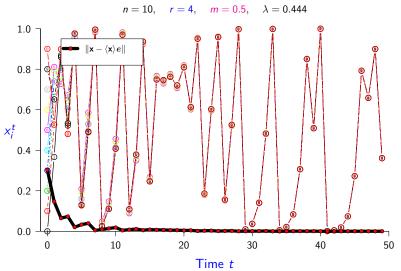
Logistic Metapopulation Simulation (r = 4, m = 0.4)



Logistic Metapopulation Simulation (r = 4, m = 0.5)



Logistic Metapopulation Simulation (r = 4, m = 0.5)



Space III 69/93

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 21 Space III Monday 5 March 2018 Space III 70/93

Announcments

Assignment 4 due Wednesday 14 March 2018, 11:30am.

Midterm test:

Date: Thursday 8 March 2018

■ *Time:* 7:00pm to 9:00pm

■ Location: BSB-B154

Invigilator/TA: Tyler Meadows

No instructor in class on Friday 9 March 2018.
Perfect time to meet with your group about your project!

Space III 71/93

Project

You should be thinking about your Project...

- Due dates were wrong: project document has been revised:
 - Preliminary draft of project (and of your personal project notebook) due Wednesday 28 March 2018, 11:30am.
 - Final version is due Monday 9 April 2018, 11:30am.
- Remember your group must give an oral presentation of your project as well (in the last couple of classes).
- Classes after the midterm are NOT optional. Your group is expected to meet in class and take advantage of the instructor's presence to solve issues with your project. This is part of your participation mark.
- Project Notebook template is posted on project page.
- Movie night?

Space III 72/93

Midterm Test

Student Name:	Student Number:	

MATHEMATICS 4MB3/6MB3 Midterm Test, Thursday 8 March 2018

Special Instructions and Notes:

- (i) This test has 12 pages. Verify that your copy is complete. Note that the final page is blank to provide additional space if needed.
- (ii) Clearly write your name and student number at the top of each page.
- (iii) Answer all questions in the space provided.
- (iv) It is possible to obtain a total of 50 marks. There are 10 multiple choice questions (2 marks each) and 10 short answer questions (total of 30 marks).
- (v) For multiple choice questions, circle only one answer.
- (vi) No calculators, notes, or aids of any kind are permitted.
- (vii) PHAC refers to the Public Health Agency of Canada.

Midterm Test

- The test will cover everything from lectures and assignments/solutions before the test.
- Material connected with time series analysis and synchrony/coherence will occur only in multiple choice questions.
- You are assumed to be comfortable with:
 - Elementary algebra, including finding the eigenvalues of 2×2 matrices.
 - Stability analyses of differential equations.
 - Finding \mathcal{R}_0 by biological and mathematical $[\rho(FV^{-1})]$ methods.
 - Converting flow charts or verbal descriptions into compartmental ODE models.
- You will be presented with scenarios including graphs, and asked to write explanations that would be understandable by people at PHAC.

Last time...

- Logistic metapopulation model
- Notion of coherence
- No-loss dispersal matrix M: column sums are all 1
- To retain homogeneous solutions: row sums are all 1
- Examples of connectivity matrices
 - equal coupling
 - nearest-neighbour coupling on a ring
- Logistic Metapopulation Simulations (10 patches)

$$r = 1, m = 0.2$$

$$r = 3.5, m = 0.2$$

$$r = 4, m = 0.1$$

$$r = 2, m = 0.2$$

$$r = 3.75, m = 0.2$$

$$r = 4$$
, $m = 0.2$

$$r = 2, m = 0.02$$

$$r = 3.83, m = 0.2$$

$$r = 4, m = 0.3$$

$$r = 2, m = 0$$

$$r = 3.83, m = 0.3$$

$$r = 4, m = 0.4$$

$$r = 3.2, m = 0.2$$

$$r = 3.83, m = 0.4$$

$$r = 4$$
. $m = 0.5$

Space III Synchrony 75/93

Quantities that affect coherence

Degree of spatial coupling:

- Determined by dispersal matrix $M = (m_{ij})$.
- Do we need to worry about about all matrix entries? n^2 parameters?
- Are eigenvalues enough?
- Dominant eigenvalue is always 1. Why?
 - Next slide...
- Coherence is affected by magnitude $|\lambda|$ of subdominant eigenvalue λ .

Definition (Positive vector)

A vector is **positive** if each of its components is positive.

Definition (Dominant eignvalue)

 λ is a **dominant eigenvalue** of a matrix A if no other eigenvalue of A has larger magnitude.

Theorem

Let A be a nonnegative matrix. If A has a positive eigenvector then the corresponding eigenvalue λ is nonnegative and dominant, i.e., $\rho(A) = \lambda$.

Proof.

See Horn & Johnson (2013) Matrix Analysis, Corollary 8.1.30, p. 522.

Space III Synchrony 77/93

Dominant eigenvalue of dispersal matrix M is always 1

Corollary

Consider a discrete-time metapopulation map,

$$x_i^{t+1} = \sum_{j=1}^{n} m_{ij} F(x_j^t), \quad i = 1, \dots, n.$$
 (\heartsuit)

If solutions of the single patch system, $x^{t+1} = F(x^t)$, yield coherent solutions of (\heartsuit) then 1 is a dominant eigenvalue of M.

Proof.

We found earlier that if solutions of the single patch map yield coherent solutions of (\heartsuit) then $\sum_{i=1}^{n} m_{ij} = 1$ for all i.

This is equivalent to the statement that Me = e, i.e., 1 is an eigenvalue of M with eigenvector e.

But e is a positive vector, hence by the lemma on the previous slide, 1 is a dominant eigenvalue of M.

Quantities that affect coherence

Maximum "reproductive rate":

- Maximum fecundity = maximum reproduction per individual per time step.
- For (single patch) logistic map, F(x) = rx(1-x), maximum fecundity is r. Note: $r = \max_x (F'(x))$.
- Maximum fecundity for any one-dimensional single species map F is $r = \max_{x} (F'(x))$.
- More generally, single patch map can be multi-dimensional: could represent multiple species (e.g., predator, prey, ...) and/or multiple states per species (e.g., S, E, I, R).
- We can think of $r = \max_{\mathbf{x}} \|D_{\mathbf{x}}F\|$ as the maximum "reproductive rate" for a multi-dimensional single-patch map.
- r is relevant to coherence.

Quantities that affect coherence

Average "reproductive rate":

- Mean "reproductive rate" over T time steps is $\frac{1}{T} \sum_{t=0}^{T-1} \|D_{\mathbf{x}_t} F\|$.
- Geometric mean turns out to be more important:

$$\left[\prod_{t=0}^{T-1} \|D_{\mathbf{x}_{t}}F\| \right]^{1/T} = \left[\|D_{\mathbf{x}_{0}}F\| \|D_{\mathbf{x}_{1}}F\| \cdots \|D_{\mathbf{x}_{T-1}}F\| \right]^{1/T} \\
= \left[\|D_{\mathbf{x}_{0}}F \cdot D_{\mathbf{x}_{1}}F \cdots D_{\mathbf{x}_{T-1}}F\| \right]^{1/T} \\
= \left[\|D_{\mathbf{x}_{0}}F^{T}\| \right]^{1/T} \\
\therefore \log \left[\prod_{t=0}^{T-1} \|D_{\mathbf{x}_{t}}F\| \right]^{1/T} = \frac{1}{T} \log \|D_{\mathbf{x}_{0}}F^{T}\|$$

Quantities that affect coherence

Average "reproductive rate":

We actually want the average over the entire trajectory, so we would like to consider

$$\lim_{T \to \infty} \frac{1}{T} \log \left\| D_{\mathbf{x}_0} F^T \right\| = \lim_{T \to \infty} \frac{1}{T} \log \left\| \prod_{t=0}^{T-1} D_{\mathbf{x}_t} F \right\|$$
$$= \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \log \left\| D_{\mathbf{x}_t} F \right\|.$$

But this limit may not exist! So consider

$$\chi_{\mathbf{x}_0} = \limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \log \|D_{\mathbf{x}_t} F\|.$$

which always exists if $||D_xF||$ is bounded (true for us because we assume $r = \max_x ||D_xF||$ exists).

Quantities that affect coherence: Summary

- Degree of spatial coupling: Magnitude $|\lambda|$ of subdominant eigenvalue λ of dispersal matrix M
- Maximum "reproductive rate":

$$r = \max_{\mathbf{x}} \|D_{\mathbf{x}}F\|$$

■ Average "reproductive rate":

$$\chi_{\mathbf{x}_0} = \limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \log \|D_{\mathbf{x}_t} F\|.$$

This is called the maximum (Lyapunov) *characteristic exponent* of the single patch map.

Criteria for asymptotic coherence

Coherence inevitable: Global asymptotic coherence: system will eventually synchronize regardless of initial conditions:

$$r|\lambda| < 1$$

Coherence possible: Local asymptotic coherence: system will synchronize if sufficiently close to a coherent attractor:

$$e^{\chi}|\lambda| < 1$$
 i.e., $\chi + \log|\lambda| < 0$

<u>Note</u>: χ is the same for "almost all" initial states **x** (non-trivial to prove)

■ Coherence impossible:

$$\chi + \log |\lambda| > 0$$

Space IV 83/93

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 22 Space IV Wednesday 7 March 2018 Space IV 84/93

Announcments

- Assignment 4 due Wednesday 14 March 2018, 11:30am.
 - You should now have received the required data files by e-mail.
- Midterm test:
 - Date: Thursday 8 March 2018
 - *Time:* 7:00pm to 9:00pm
 - Location: BSB-B154
 - Invigilator/TA: Tyler Meadows
- No instructor in class on Friday 9 March 2018.
 Perfect time to meet with your group about your project!

85/93

- Quantities that affect coherence
- Coherence criteria

Global asymptotic coherence (GAC) for equal coupling

Theorem: $r|\lambda| < 1 \implies \mathsf{GAC}$.

Proof in case of equal coupling:

Dispersal matrix:

Subdominant eigenvalue:

$$m_{ij} = egin{cases} 1-m & i=j \ m/(n-1) & i
eq j \end{cases}$$

$$\lambda = 1 - \left(\frac{n}{n-1}\right)m$$

General map:

Equal coupling case in terms of λ :

$$x_i' = \sum_{i=1}^n m_{ij} F(x_j)$$
 $= \lambda F(x_i) + (1 - \lambda) \langle F(x_j) \rangle$

Global asymptotic coherence (GAC) for equal coupling

Difference in density between any two patches at next iteration:

$$x'_i - x'_k = \lambda [F(x_i) - F(x_k)]$$

= $\lambda F'(\xi)(x_i - x_k)$ (Mean Value Theorem)

Hence
$$|x_i' - x_k'| \le r|\lambda||x_i - x_k|$$
 because $r = \max_x |F'(x)|$.

Therefore,
$$r|\lambda| < 1$$
 implies $|x_i - x_k| \to 0$.

Q.E.D.

Note: Actually true for very general connectivity matrices M and multi-dimensional single-patch dynamics $F(\mathbf{x})$.

Earn & Levin (2006) PNAS 103, 3968-3971

Theory of local asymptotic coherence (LAC)

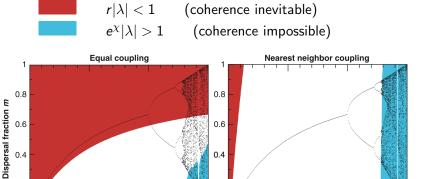
- Requires measure theory (e.g., Math 4A03), which allows us to make precise statements like " χ is the same for almost all initial states".
- More significant theoretically than practically, because it yields only *possibility* rather than *probability* of coherence.
- Quasi-global theory attempts to bridge the gap between "probability = 1" and "probability > 0".

McCluskey & Earn (2011) J. Math. Biol. 62, 509-541

Application of simple coherence criteria

10 patch logistic metapopulation

0.2



0.4

0.2

Maximum fecundity r Earn, Levin & Rohani (2000) Science 290, 1360-1364

Maximum fecundity r

Space IV Synchrony 90/93

Comments on coherence theory

Global theory is limited in applicability:

- Nice theorem guarantees global asymptotic coherence (GAC)

 Earn & Levin (2006) PNAS 103, 3968-3971
- But hypotheses quite restrictive

Local theory is limited in practical power:

- Applies very generally and aids understanding
- But coherence possible doesn't tell how probable

Quasi-global theory promising:

- Show asymptotic approach to coherent manifold from anywhere nearby (rather than just near attractor)
- Via Lozinskii measures

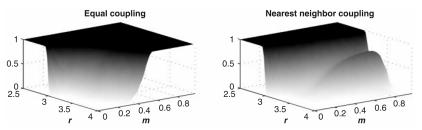
McCluskey & Earn (2011) J. Math. Biol. 62, 509-541

91/93

Coherence in "numerical experiments" (simulations)

10 patch logistic metapopulation

- Systematically explore representative set of initial conditions and determine probability of coherence within some tolerance, within some specified time
 - *e.g.*, coherence to within 10% within 10 iterations



Earn, Levin & Rohani (2000) Science 290, 1360-1364

■ Extremely demanding computationally. . .

92/93

Connecting coherence to extinction

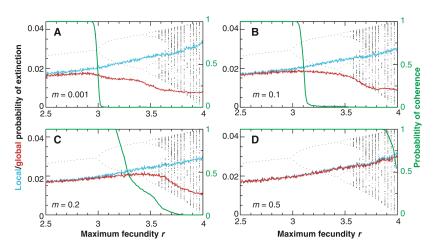
- Strictly deterministic simulations reveal conditions (model parameter regions) that tend to lead to coherence.
- Coherence \neq extinction, but intuitively predict:

higher probability of coherence \implies

- higher probability of global extinction
- smaller difference between probabilities of local and global extinction
- Test these predictions by adding global noise (randomly occurring events that affect all patches equally) to the deterministic simulations.
- Global noise models environmental stochasticity (e.g., weather), which presents a large risk of global extinction because the noise is correlated across all patches.

Effects of global events that affect all patches equally

10 patch logistic metapopulation subject to "global noise"



Earn, Levin & Rohani (2000) Science 290, 1360-1364