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Announcments

m Assignment 3 due today.
m Do group contribution survey TODAY!!

m Assignment 4 due Wednesday 14 March 2018, 11:30am.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm
m Location: BSB-B154

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html
https://surveys.mcmaster.ca/limesurvey2/index.php/777818
http://davidearn.github.io/math4mb/assignments/assignments.html

Spatial Epidemic Dynamics
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Space: the final frontier.
These are the voyages of the Starship Enterprise.
Her ongoing mission: to explore strange new worlds,

to seek out new life-forms and new civilizations;

to boldly go where no one has gone before. BETAR TREK

Instructor: David Earn



Something to think about

All of our analysis has been of temporal patterns of epidemics

m What about spatial patterns?

What problems are suggested by observed spatial epidemic
patterns?

Can spatial epidemic data suggest improved strategies for
control?

Can we reduce the eradication threshold below peit = 1 — Rio?

Instructor: David Earn



Measles and Whooping Cough in 60 UK cities

Measles

Whooping
Cough

Rohani, Earn & Grenfell (1999) Science 286, 968-971

Instructor: David Earn



Better Control? Eradication?

m The term-time forced SEIR model successfully predicts past
patterns of epidemics of childhood diseases

m Can we manipulate epidemics predictably so as to increase
probability of eradication?

m Can we eradicate measles?

Instructor: David Earn



|dea for eradicating measles

m Try to re-synchronize measles epidemics in the UK and,
moreover, synchronize measles epidemics worldwide:
synchrony is good

m Devise new vaccination strategy that tends to synchronize. ..
m Avoid spatially structured epidemics. ..
m Time to think about the mathematics of synchrony. ..

m But analytical theory of synchrony in a periodically forced
system of differential equations is mathematically
demanding. ..

So let's consider a much simpler biological model. . .

Instructor: David Earn



The
Logistic Map




Logistic Map

Simplest non-trivial discrete time population model for a
single species (with non-overlapping generations) in a single
habitat patch.

Time: t =0,1,2,3,...
State: x € [0,1] (population density)

Population density at time t is x*. Solutions are sequences:

xt1 = F(x?) for some reproduction function F(x).

For logistic map: F(x) = rx(1 — x), so x'™! = rxt(1 — x?t).
x = [r(1 - xt)|x* = ris maximum fecundity (which is
achieved in limit of very small population density).

What kinds of dynamics are possible for the Logistic Map?

Instructor: David Earn



Logistic Map Time Series, r =0.5

xtHl = rxt(1—xt), r=05 xo=0.63662
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Logistic Map Time Series, r =0.9

xtHl = xt(1 - xt), r=09, xo=0.63662
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Logistic Map Time Series, r =1
xHl = rxf(1-x*), r=1, x9=0.63662
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Logistic Map Time Series,

r=1.1

xtHl = rxt(1—-x%), r=11 x9=0.63662
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Logistic Map Time Series, r=1.5

xtHl = rxt(1—x%), r=15xo=0.63662
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Logistic Map Time Series, r =2

xtHl = rxf(1—-x*), r=2, x9=0.31831
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Logistic Map Time Series, r =2.5

xtHl = rxf(1—-x*), r=25 xy=0.31831
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Logistic Map Time Series, r =3

xHl = rxf(1-x*), r=3, xp=0.31831
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Logistic Map Time Series, r
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Logistic Map Time Series, r = 3.75
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xHl = rxf(1 - x*), r=3.75 xp=0.31831
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Logistic Map Summary

m Time series show:

m r <1 — Extinction.

m 1 <r <3 = Persistence at equilibrium.

m r >3 = period doubling cascade to chaos, then appearance
of cycles of all possible lengths, and more chaos, ...

m How can we summarize this in a diagram?

m Bifurcation diagram (wrt r).
m Ignore transient behaviour: just show attractor.

Instructor: David Earn



Logistic Map, F(x) = rx(1 — x),

Instructor: David Earn



Logistic Map, F(x) = rx(1 — x
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Instructor: David Earn



Logistic Map, F(x
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Instructor: David Earn
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Announcments

m Assignment 3.
m Thanks for doing the group contribution survey.

m Assignment 4 due Wednesday 14 March 2018, 11:30am.

m Midterm test:

m Date: Thursday 8 March 2018
m Time: 7:00pm to 9:00pm
m Location: BSB-B154

Instructor: David Earn


http://davidearn.github.io/math4mb/assignments/assignments.html
https://surveys.mcmaster.ca/limesurvey2/index.php/777818
http://davidearn.github.io/math4mb/assignments/assignments.html

Logistic Map as a Tool to Investigate Synchrony

Very simple single-patch model: only one state variable.

Displays all kinds of dynamics from GAS equilibrium, to
periodic orbits, to chaos.

m This was extremely surprising to population biologists and
mathematicians in the 1970s.
May RM (1976) “Simple mathematical models with very complicated dynamics” Nature 261, 459-467

m Easier to work with logistic map as single patch dynamics
than SIR or SEIR model.

Can still understand how synchrony works conceptually.

m Now we are ready for the ...
... Mathematics of Synchrony ...

Instructor: David Earn



Mathematics of Synchrony

m System comprised of isolated patches
e.g., cities, labelled i =1,...,n

m State of system in patch / specified by x;
e.g., Xj = (Sia Ei7 Ii7 RI)

m Connectivity of patches specified by a dispersal matrix
M = (mj)

m System is coherent (perfectly synchronous) if the state is the
same in all patches
[e,X] =Xo="--+=Xp

Instructor: David Earn



lllustrative example: logistic metapopulation

m Single patch model: xt+1 = F(x%)

m Reproduction function: F(x) = rx(1 — x)

1

n
m Multi-patch model:  x!*1 = Z m;; F(x;)
j=1
X1t+1 mi1 s Mg F(Xf)

Xt My -+ Mpn F(x})
where M = (m;;) is dispersal matrix.

m Colour coding of indices:

m row indices are red
m column indices are cyan

Instructor: David Earn



Basic properties of dispersal matrices M = (my;)

Discrete-time metapopulation model:
n
1 .
xit :Zm;jF(xJ-t), i=1,2,...,n.
j=1

m m;; = proportion of population in patch j
that disperses to patch i.

m..0<m; <1 foralliandj
(each mj; is non-negative and at most 1)

n
m Total proportion that leaves or stays in patch j: Z m;;
(sum of column j) i=1

n
m Z m;; <1 (every column sums to at most 1)
i=1

Could be < 1 if some individuals are lost (die) while dispersing.

Instructor: David Earn



Basic properties of dispersal matrices M = (my;)

Discrete-time metapopulation model:
n
t+1 -
XI-+ :Zm,-jF(xjt), i=1,2,...,n.
Jj=1

Definition (No loss dispersal matrix)

An n x n matrix M = (mj;) is said to be a no loss dispersal
matrix if all its entries are non-negative (m;; > 0 for all i and /)
and its column sums are all 1, i.e,,

n
ZmU:l’ foreach j=1,...,n.
i=1

m The dispersal process is “conservative” in this case.
m A no loss dispersal matrix is also said to be “column stochastic”.

Instructor: David Earn



Notation for coherent states

Discrete-time metapopulation model:
n
1 .
XI-H' :Zm,-jF(xf), i=1,2,...,n.
j=1

m State at time t is x" = (x{,...,x}) € R".

m If state x is coherent, then for some x € R we have

X = (x1,x2,...,Xn)
=(x,x,...,x)=x(1,1,...,1)

m For convenience, define
e=(1,1,...,1) e R"
so any coherent state can be written xe, for some x € R.

Instructor: David Earn



Constraint on sums of dispersal matrix M

Lemma (Row sums are the same)

If all initially coherent states remain coherent then the row sums of
the dispersal matrix are all the same.

Proof

Suppose initially coherent states remain coherent, i.e.,
x! = ae = x't! = be for some b € R.
Choose a such that F(a) #0. Then

—bme,J Zmu Zmu

= Z iy = F(a) (independent of /) .

Instructor: David Earn



Constraint on sums of dispersal matrix M

Lemma (Row sums are all 1)

If every solution {x'} of the single patch map F(x) yields a
coherent solution {x*e} of the full map then the row sums of the
dispersal matrix are all 1.

Suppose x! = ae = x‘*1 = F(a)e and F(a) # 0. Then

n n n

Xt =F(a) =Y myF(xf) = myF(a) = F(a) Y my
= j=1 j=1
— Z iy = 1 (independent of /)
Jj=1 []

Instructor: David Earn



Simple examples of no loss dispersal matrices

m Equal coupling: a proportion m from each patch disperses
uniformly among the other n — 1 patches:

m_:{l—m i=j
Do m/(n=1) i #

m Nearest-neighbour coupling: a proportion m go to the two
nearest patches:

1-m i=j
mj; = m/2 i:j—lorj+1(m0d n)
0 otherwise

m Real dispersal patterns generally between these two extremes

Instructor: David Earn



Key Question

m Can we find conditions on the dispersal matrix M, and/or the
single patch reproduction function F, that guarantee (or
preclude) coherence asymptotically (as t — o0)?

m If so, then this sort of analysis should help to identify
synchronizing vaccination strategies.

Instructor: David Earn



Logistic Metapopulation Simulation (r =1, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.2)
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Logistic Metapopulation Simulation (r =2, m = 0.2)

n=10, r=2, m=02 A=0.778
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Logistic Metapopulation Simulation (r =2, m = 0.02)

n=10, r=2, m=0.02, XA=0.978
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Logistic Metapopulation Simulation (r =2, m = 0.02)

n=10, r=2, m=0.02, XA=0.978
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Logistic Metapopulation Simulation (r =2, m = 0)
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Logistic Metapopulation Simulation (r =2, m = 0)
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Logistic Metapopulation Simulation (r = 3.83, m = 0.2)
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Logistic Metapopulation Simulation (r = 3.83, m = 0.2)
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Instructor: David Earn
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