19 Space

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 4MB3/6MB3 Mathematical Biology

Instructor: David Earn

Lecture 19
Space
Wednesday 28 February 2018

Announcments

■ Assignment 3 due today.
■ Do group contribution survey TODAY!!
■ Assignment 4 due Monday 12 March 2018, 11:30am.
■ Midterm test:

- Date: Thursday 8 March 2018
- Time: 7:00pm to 9:00pm
- Location: BSB-B154

Spatial Epidemic Dynamics

Something to think about

- All of our analysis has been of temporal patterns of epidemics

■ What about spatial patterns?

■ What problems are suggested by observed spatial epidemic patterns?

■ Can spatial epidemic data suggest improved strategies for control?

- Can we reduce the eradication threshold below $p_{\text {crit }}=1-\frac{1}{\mathcal{R}_{0}}$?

Measles and Whooping Cough in 60 UK cities

Measles

Whooping
Cough

Rohani, Earn \& Grenfell (1999) Science 286, 968-971

Better Control? Eradication?

- The term-time forced SEIR model successfully predicts past patterns of epidemics of childhood diseases
- Can we manipulate epidemics predictably so as to increase probability of eradication?
- Can we eradicate measles?

Idea for eradicating measles

- Try to re-synchronize measles epidemics in the UK and, moreover, synchronize measles epidemics worldwide: synchrony is good

■ Devise new vaccination strategy that tends to synchronize...

- Avoid spatially structured epidemics...
- Time to think about the mathematics of synchrony...
- But analytical theory of synchrony in a periodically forced system of differential equations is mathematically demanding...

■ So let's consider a much simpler biological model. . .

The Logistic Map

Logistic Map

- Simplest non-trivial discrete time population model for a single species (with non-overlapping generations) in a single habitat patch.
- Time: $t=0,1,2,3, \ldots$
- State: $x \in[0,1] \quad$ (population density)

■ Population density at time t is x^{t}. Solutions are sequences:

$$
x^{0}, x^{1}, x^{2}, \ldots
$$

- $x^{t+1}=F\left(x^{t}\right)$ for some reproduction function $F(x)$.

■ For logistic map: $F(x)=r x(1-x)$, so $x^{t+1}=r x^{t}\left(1-x^{t}\right)$. $x^{t+1}=\left[r\left(1-x^{t}\right)\right] x^{t} \Longrightarrow r$ is maximum fecundity (which is achieved in limit of very small population density).
■ What kinds of dynamics are possible for the Logistic Map?

Logistic Map Time Series, $\quad r=0.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=0.5, \quad x_{0}=0.63662
$$

Logistic Map Time Series, $\quad r=0.9$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=0.9, \quad x_{0}=0.63662
$$

Logistic Map Time Series, $\quad r=1$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=1, \quad x_{0}=0.63662
$$

Logistic Map Time Series, $\quad r=1.1$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=1.1, \quad x_{0}=0.63662
$$

Logistic Map Time Series, $\quad r=1.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=1.5, \quad x_{0}=0.63662
$$

Logistic Map Time Series, $\quad r=2$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=2, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=2.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=2.5, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=3$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=3.2$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.2, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=3.5$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.5, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=3.75$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.75, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=3.83$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=3.83, \quad x_{0}=0.31831
$$

Logistic Map Time Series, $\quad r=4$

$$
x^{t+1}=r x^{t}\left(1-x^{t}\right), \quad r=4, \quad x_{0}=0.31831
$$

Logistic Map Summary

- Time series show:
- $r \leq 1 \Longrightarrow$ Extinction.
- $1<r<3 \Longrightarrow$ Persistence at equilibrium.

■ $r>3 \Longrightarrow$ period doubling cascade to chaos, then appearance of cycles of all possible lengths, and more chaos, ...

- How can we summarize this in a diagram?
- Bifurcation diagram (wrt r).
- Ignore transient behaviour: just show attractor.

Logistic Map, $F(x)=r x(1-x), \quad 1 \leq r \leq 4$

Logistic Map, $F(x)=r x(1-x), \quad 2.9 \leq r \leq 4$

Instructor: David Earn

Logistic Map, $F(x)=r x(1-x), \quad 3.4 \leq r \leq 4$

Instructor: David Earn

