Crash course on logic<br>Dr. Darío A. Valdebenito ${ }^{1}$

Definition 1. A proposition is a statement whose truth value can be determined.
Example. The proposition "there are prime numbers" is a proposition with truth value True. "All numbers are prime" is a proposition with truth value False. "This statement is false" is not a statement.

There are statements which do not fall under this paradigm, such as the last example, which we will ignore in these notes.

Definition 2. Let $p$ and $q$ be propositions. We define the following operations:
(a) $p$ AND $q$, denoted $p \wedge q$, which takes the value True if $p$ and $q$ are both True, False otherwise.
(b) $p$ OR $q$, denote $p \vee q$, which takes the value True if either $p$ or $q$ is True, False otherwise.
(c) NOT $p$, denoted $\neg p$, which takes the opposite value of $p$.

The negation of $p \wedge q$ is given by $\neg p \vee \neg q$. The negation of $p \vee q$ is $\neg p \wedge \neg q$. You can easily verify what happens to the truth values.
Example. Let $p$ and $q$ be the statements $x>1$ and $x<2$, respectively. The proposition $p \wedge q$ is True for $x \in(1,2)$, False otherwise. $\neg p$ and $\neg q$ are $x \leq 1$ and $x \geq 2$, respectively, and the negation of $p \wedge q$ is $\neg p \vee \neg q$, or, in plain terms, $x \leq 1$ or $x \geq 2$, which is True for any real number $x$ such that $x \notin(1,2)$.

Definition 3. Given $p$ and $q$ propositions, we define:
(a) Equivalence, denoted $p \Leftrightarrow q$, which takes the value True if $p$ and $q$ have the same value, False otherwise.
(b) "If $p$, then $q$," denoted $p \Rightarrow q$, which takes the value True if $q$ is True whenever $p$ is True. If this condition does not hold, then $p \Rightarrow q$ takes the value False.

Example. Consider the statements $p$ and $q$ given by "Alice is in Canada" and "Alice is in North America," respectively. Then $p \Leftrightarrow q$ is False (Alice could be in the United States, in which case $p$ is False, but $q$ is True), $p \Rightarrow q$ is True (if Alice is in Canada, then she must be in North America), and $q \Rightarrow p$ is False (Alice could be in Mexico, in which case she is in North America, but not in Canada). Note that in $p \Rightarrow q$, if $p$ is False, then the value of $q$ is irrelevant ${ }^{2}$ : if Alice is not in Canada, she could be in North America or not.

In proofs, the fact that $p \Rightarrow q$ and $\neg p \vee q$ take the same truth values is useful. The negation of $p \Rightarrow q$ is thus $p \wedge \neg q$ (where we have used that $\neg \neg p=p$ ).

[^0]Example. Going back to our previous example, $p \Rightarrow q$ stated, "if Alice is in Canada, then she must be in North America." Here $\neg p \vee q$ reads, "Alice is not in Canada or Alice is in North America," which is True (just like the original statement). The negation of $p \Rightarrow q$ is $p \wedge \neg q$, "Alice is in Canada and is not in North America." This statement is False, which means $p \Rightarrow q$ must be True.

A deeper example is the (non-)theorem:
Theorem 4. If $x_{1}$ and $x_{2}$ are solutions of $a x=b$, then $x_{1}=x_{2}$.
The foregoing theorem is actually False, because its negation is True. Indeed, take $a=b=0, x_{1}=1, x_{2}=2$. Then the first part of the statement is True, but the second part is False.

Another important relation for proofs is that $p \Leftrightarrow q$ is equivalent to $p \Rightarrow q$ and $q \Rightarrow p$. Equivalence is often written as " $p$ if and only if $q$." This is often used in mathematical proofs as well.

Theorem 5. Let $A$ be a square matrix. The following statements are equivalent:
(a) $A-\lambda I$ is singular.
(b) There is a nonzero vector $\mathbf{v}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

Proof. We first prove "if (a), then (b)." If $A-\lambda I$ is singular, then the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$ has infinitely many solutions. Fix any nonzero $\mathbf{v}$ solving the equation. Then

$$
0=(A-\lambda I) \mathbf{v}=A \mathbf{v} 0 \lambda I \mathbf{v}=A \mathbf{v}-\lambda \mathbf{v}
$$

and rearranging we get $A \mathbf{v}=\lambda \mathbf{v}$.
Now we prove "if (b), then (a)." We have $A \mathbf{v}=\lambda \mathbf{v}=\lambda I \mathbf{v}$, or $A \mathbf{v}-\lambda I \mathbf{v}=\mathbf{0}$, which can be rewritten as $(A-\lambda I) \mathbf{v}=\mathbf{0}$. The last statement means that $A-\lambda I$ must be singular, since the system $(A-\lambda I) \mathbf{v}=\mathbf{0}$ has a nontrivial solution.

## "For all" and "exists"

A proposition $p$ may take different truth values depending on a certain variable $x$, in that case we write $p(x)$. We cannot determine whether $p(x)$ is True or False without some sort of information on $x$. Consider, e.g., the proposition $x^{2}>x$. This proposition is True if $x<0$ or $x>1$, False otherwise.

Definition 6. Let $S$ be a set.

- The proposition "for all $x$ in $S, p(x)$," denoted $(\forall x \in S) p(x)$ takes the value True if $p(x)$ is True for each and every $x \in S$, False otherwise.
- The proposition "there exists $x$ in $S, p(x)$," denoted $(\exists x \in S) p(x)$, takes the value True if there is one $x_{0} \in S$ such that $p\left(x_{0}\right)$ is True; if no such $x_{0}$ exists, the proposition takes the value False.

As before, we are interested in the negations of the aforementioned propositions. The negation of $(\forall x \in S) p(x)$ is $(\exists x \in S) \neg p(x)$, while the negation of $(\exists x \in S) p(x)$ is $(\forall x \in$ $S) \neg p(x)$.

Example. Let $S=\mathbb{R}$, and the proposition $p(x)$ given by $x^{2}>x$, with negation $x^{2} \leq x$. Consider the proposition $q$ given by $(\forall x \in \mathbb{R})\left(x^{2}>x\right)$, and its negation is $(\exists x \in \mathbb{R})\left(x^{2} \leq x\right)$. We can see that $\neg q$ is True: $\neg p(1 / 2)$ is the proposition $(1 / 2)^{2} \leq 1 / 2$, which is True.
Remark. Notice that the proposition $(\forall x \in \mathbb{R})\left(x^{2}>x\right)$ was labelled $q$, not $q(x)$. This is because we cannot input a value of $x$ into the whole proposition, only into $x^{2}>x$, which is why $p(x)$ is actually denoted $p(x)$.
Example. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of $n$ individuals, $I$ be the set of all pairs $(i, j)$ with $1 \leq i, j \leq n$ and $i \neq j$, and let $b_{j}$ be the birthday of $x_{j}$. The statement "there are two individuals with the same birthday" can be written as

$$
(\exists(i, j) \in I)\left(b_{i}=b_{j}\right) .
$$

Its negation is therefore

$$
(\forall(i, j) \in I)\left(b_{i} \neq b_{j}\right) .
$$

Notice that the original statement does not exclude the possibility of three or more individuals sharing the same birthday. Note also that the condition $i \neq j$ is essential: without it, the statement is obviously true (because $b_{j}=b_{j}$ ).


[^0]:    ${ }^{1}$ Department of Mathematics and Statistics, McMaster University
    ${ }^{2}$ Mathematicians sometimes say, "false implies anything" to state this fact.

