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Definition 1. A proposition is a statement whose truth value can be determined.

Example. The proposition “there are prime numbers” is a proposition with truth value
True. “All numbers are prime” is a proposition with truth value False. “This statement is
false” is not a statement.

There are statements which do not fall under this paradigm, such as the last example, which
we will ignore in these notes.

Definition 2. Let p and q be propositions. We define the following operations:

(a) p AND q, denoted p ∧ q, which takes the value True if p and q are both True, False
otherwise.

(b) p OR q, denote p∨q, which takes the value True if either p or q is True, False otherwise.

(c) NOT p, denoted ¬p, which takes the opposite value of p.

The negation of p ∧ q is given by ¬p ∨ ¬q. The negation of p ∨ q is ¬p ∧ ¬q. You can
easily verify what happens to the truth values.

Example. Let p and q be the statements x > 1 and x < 2, respectively. The proposition
p ∧ q is True for x ∈ (1, 2), False otherwise. ¬p and ¬q are x ≤ 1 and x ≥ 2, respectively,
and the negation of p ∧ q is ¬p ∨ ¬q, or, in plain terms, x ≤ 1 or x ≥ 2, which is True for
any real number x such that x 6∈ (1, 2).

Definition 3. Given p and q propositions, we define:

(a) Equivalence, denoted p ⇔ q, which takes the value True if p and q have the same
value, False otherwise.

(b) “If p, then q,” denoted p ⇒ q, which takes the value True if q is True whenever p is
True. If this condition does not hold, then p⇒ q takes the value False.

Example. Consider the statements p and q given by “Alice is in Canada” and “Alice is in
North America,” respectively. Then p⇔ q is False (Alice could be in the United States, in
which case p is False, but q is True), p⇒ q is True (if Alice is in Canada, then she must be
in North America), and q ⇒ p is False (Alice could be in Mexico, in which case she is in
North America, but not in Canada). Note that in p ⇒ q, if p is False, then the value of q
is irrelevant2: if Alice is not in Canada, she could be in North America or not.

In proofs, the fact that p ⇒ q and ¬p ∨ q take the same truth values is useful. The
negation of p⇒ q is thus p ∧ ¬q (where we have used that ¬¬p = p).

1Department of Mathematics and Statistics, McMaster University
2Mathematicians sometimes say, “false implies anything” to state this fact.
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Example. Going back to our previous example, p ⇒ q stated, “if Alice is in Canada, then
she must be in North America.” Here ¬p ∨ q reads, “Alice is not in Canada or Alice is in
North America,” which is True (just like the original statement). The negation of p⇒ q is
p ∧ ¬q, “Alice is in Canada and is not in North America.” This statement is False, which
means p⇒ q must be True.

A deeper example is the (non-)theorem:

Theorem 4. If x1 and x2 are solutions of ax = b, then x1 = x2.

The foregoing theorem is actually False, because its negation is True. Indeed, take
a = b = 0, x1 = 1, x2 = 2. Then the first part of the statement is True, but the second part
is False.

Another important relation for proofs is that p ⇔ q is equivalent to p ⇒ q and q ⇒ p.
Equivalence is often written as “p if and only if q.” This is often used in mathematical
proofs as well.

Theorem 5. Let A be a square matrix. The following statements are equivalent:

(a) A− λI is singular.

(b) There is a nonzero vector v such that Av = λv.

Proof. We first prove “if (a), then (b).” If A−λI is singular, then the equation (A−λI)v = 0
has infinitely many solutions. Fix any nonzero v solving the equation. Then

0 = (A− λI)v = Av0λIv = Av − λv,

and rearranging we get Av = λv.
Now we prove “if (b), then (a).” We have Av = λv = λIv, or Av−λIv = 0, which can

be rewritten as (A − λI)v = 0. The last statement means that A − λI must be singular,
since the system (A− λI)v = 0 has a nontrivial solution.

“For all” and “exists”

A proposition p may take different truth values depending on a certain variable x, in that
case we write p(x). We cannot determine whether p(x) is True or False without some sort
of information on x. Consider, e.g., the proposition x2 > x. This proposition is True if
x < 0 or x > 1, False otherwise.

Definition 6. Let S be a set.

• The proposition “for all x in S, p(x),” denoted (∀x ∈ S)p(x) takes the value True if
p(x) is True for each and every x ∈ S, False otherwise.

• The proposition “there exists x in S, p(x),” denoted (∃x ∈ S)p(x), takes the value
True if there is one x0 ∈ S such that p(x0) is True; if no such x0 exists, the proposition
takes the value False.

As before, we are interested in the negations of the aforementioned propositions. The
negation of (∀x ∈ S)p(x) is (∃x ∈ S)¬p(x), while the negation of (∃x ∈ S)p(x) is (∀x ∈
S)¬p(x).
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Example. Let S = R, and the proposition p(x) given by x2 > x, with negation x2 ≤ x.
Consider the proposition q given by (∀x ∈ R)(x2 > x), and its negation is (∃x ∈ R)(x2 ≤ x).
We can see that ¬q is True: ¬p(1/2) is the proposition (1/2)2 ≤ 1/2, which is True.

Remark. Notice that the proposition (∀x ∈ R)(x2 > x) was labelled q, not q(x). This is
because we cannot input a value of x into the whole proposition, only into x2 > x, which is
why p(x) is actually denoted p(x).

Example. Let S = {x1, . . . , xn} be a set of n individuals, I be the set of all pairs (i, j) with
1 ≤ i, j ≤ n and i 6= j, and let bj be the birthday of xj . The statement “there are two
individuals with the same birthday” can be written as

(∃(i, j) ∈ I)(bi = bj).

Its negation is therefore
(∀(i, j) ∈ I)(bi 6= bj).

Notice that the original statement does not exclude the possibility of three or more
individuals sharing the same birthday. Note also that the condition i 6= j is essential:
without it, the statement is obviously true (because bj = bj).
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