Mathematics 3A03 — Real Analysis I

TERM TEST #1 - 4 March 2019

Duration: 90 minutes

• Print your name and student number clearly in the space below, with one character in each box.

INSTRUCTOR'S SOLUTIONS

• Write your signature here: _____

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of **10 pages** (*i.e.*, **5 double-sided pages**). There are **7 questions** in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final four pages are blank to provide extra space if needed.
- The first 4 questions do not require any justification for your answers. For these, you will be assessed on your answers only. *Do <u>not</u> justify your answers to these questions.*
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50.

GOOD LUCK and ENJOY!

MARKS

- [3] **QUESTION 1.** (*Circle the correct answer.*) For each of the following sets, determine whether it is **Countable** or **Uncountable**. Do <u>not</u> justify your answers.
 - (a) $\mathbb{R} \setminus \mathbb{Q}$

(a) $\mathbb{R} \setminus \mathbb{Q}$ Countable Uncountable (b) $\mathbb{Z} \times \mathbb{Q}$ Countable Uncountable (c) $\mathbb{N} \cup \mathbb{Q}$ Countable Uncountable

- [5] **QUESTION 2.** (*Circle the correct answer.*) Determine whether each the following statements is **True** or **False**. Do <u>not</u> justify your answers.
 - (a) Every non-empty subset of \mathbb{Q} has a least element.
 - True False
 - (b) Every bounded sequence of real numbers converges.

True False

- (c) Every convergent sequence of real numbers is a Cauchy sequence.True False
- (d) Every Cauchy sequence of real numbers is monotonic.

True False

(e) Every surjective function $f : \mathbb{R} \to \mathbb{R}$ is a bijection. **True** False [9] **QUESTION 3.** For each of the sets E in the table below, answer **YES** or **NO** in each column to indicate whether or not E is open, dense in \mathbb{R} , or compact. Do <u>not</u> justify your answers.

Set E	Open?	Dense in \mathbb{R} ?	Compact?
$(0,1)\cap\mathbb{Q}$	NO	NO	NO
Ø	YES	NO	YES
$\{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$	NO	NO	YES

[6] **QUESTION 4.** For each of the sets E in the table below, fill in the associated point or set in each column, *i.e.*, for each set E state the least upper bound $(\sup(E))$, the interior (E°) , and the boundary (∂E) . If the requested point or set does not exist, then indicate this with the symbol \nexists . Do <u>not</u> justify your answers.

E	$\sup\left(E ight)$	E°	∂E
$(-\sqrt{2},\sqrt{2})$	$\sqrt{2}$	E	$\{-\sqrt{2},\sqrt{2}\}$
$\left\{-\frac{1}{\sqrt{1+n^2}}:n\in\mathbb{N}\right\}$	0	Ø	$E \cup \{0\}$

$[10] \quad \text{QUESTION 5.}$

(a) State the formal definition of "the sequence $\{s_n\}$ converges to L as $n \to \infty$ ".

 $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \ge N, |s_n - L| < \varepsilon.$

(b) Suppose $\{a_n\}$ is a sequence of real numbers that converges to a as $n \to \infty$. Use the formal definition to prove that the sequence $\left\{a_n + \frac{1}{n^2}\right\}$ also converges to a as $n \to \infty$.

We must show that $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N$, $\left| a_n + \frac{1}{n^2} - a \right| < \varepsilon$. Since $a_n \to a$ as $n \to \infty$, given $\varepsilon > 0$, we can find $N_1 \in \mathbb{N}$ such that $\forall n \ge N_1$,

$$|a_n-a|<\frac{\varepsilon}{2}.$$

Now note that by the triangle inequality,

$$\left|a_n + \frac{1}{n^2} - a\right| \le |a_n - a| + \frac{1}{n^2},$$

so if we can ensure that $1/n^2 < \varepsilon/2$, we'll be done. To that end, note that

$$\frac{1}{n^2} < \frac{\varepsilon}{2} \iff n^2 > \frac{2}{\varepsilon} \iff n > \sqrt{\frac{2}{\varepsilon}}.$$

Therefore, let

$$N_2 = \left\lceil \sqrt{\frac{2}{\varepsilon}} \right\rceil + 1$$

from which it follows that $\forall n \geq N_2, n > \sqrt{\frac{2}{\varepsilon}}$, and by reversing the above steps, we have $\frac{1}{n^2} < \frac{\varepsilon}{2}$ for all $n \geq N_2$.

Finally, let $N = \max\{N_1, N_2\}$. Then, $\forall n \ge N$, we have

$$\left|a_n + \frac{1}{n^2} - a\right| \le |a_n - a| + \frac{1}{n^2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

as required.

$[10] \quad \mathbf{QUESTION} \ \mathbf{6}.$

(a) (Fill in the blanks.)

The *Bolzano-Weierstrass theorem* (BWT) states that every <u>bounded</u> sequence of real numbers contains a <u>convergent</u> subsequence.

(b) Prove or disprove: If $\{a_n\}$ and $\{b_n\}$ are both bounded then $\{a_nb_n\}$ contains a convergent subsequence.

This is true. Since $\{a_n\}$ is bounded, $\exists M_a > 0$ such that $|a_n| \leq M_a$ for all $n \in \mathbb{N}$. Similarly, since $\{b_n\}$ is bounded, $\exists M_b > 0$ such that $|b_n| \leq M_b$ for all $n \in \mathbb{N}$. Consequently, for all $n \in \mathbb{N}$ we have

$$|a_n b_n| \le |a_n| \, |b_n| \le M_a M_b \, ,$$

i.e., the sequence $\{a_n b_n\}$ is bounded (by $M_a M_b$).

Hence, by BWT, $\{a_n b_n\}$ contains a convergent subsequence.

(c) Prove or disprove: If $\{a_n\}$ contains a divergent subsequence and $\{b_n\}$ contains a divergent subsequence then $\{a_nb_n\}$ diverges.

This is false. Let $a_n = b_n = (-1)^n$. Then both a_n and b_n have a divergent subsequence (the entire sequence is an example), but $a_n b_n = (-1)^{2n} = 1$ for all $n \in \mathbb{N}$, so $\{a_n b_n\}$ is a constant sequence and therefore converges.

[7] QUESTION 7.

(a) State one of the three equivalent conditions that can be used to define compact subsets of \mathbb{R} , and

The three equivalent definitions of compactness discussed in class are

- (1) A is compact iff A is closed and bounded;
- (2) A is compact iff every sequence in A contains a subsequence that converges to a point in A (the Bolzano-Weierstrass property);
- (3) A is compact iff every open cover of A contains a finite subcover (the Heini-Borel property).
- (b) use the property you stated in part (a) to prove that if A and B are both non-empty, compact subsets of \mathbb{R} then $A \cup B$ is also compact.
 - **closed and bounded:** Recall that E' refers to the set of accumulation points of a set E, and E is closed iff $E' \subseteq E$.
 - $A \cup B$ is closed: Let $x \in (A \cup B)'$. We must show that $x \in A \cup B$. If $x \in A'$ then $x \in A$ because A is closed; hence $x \in A \cup B$. Similarly, if $x \in B'$ then $x \in B$ because B is closed; hence $x \in A \cup B$. If $x \notin A'$ and $x \notin B'$ then there is a deleted neighbourhood of x that contains no points of A and no points of B, *i.e.*, no points of $A \cup B$, contradicting the fact that x is an accumulation point of $A \cup B$. Thus, either $x \in A'$ or $x \in B'$ (or both), which we have seen implies that $x \in A \cup B$.
 - $A \cup B$ is bounded: Since A is bounded, there exists $M_A > 0$ such that $\forall x \in A$, $|x| < M_A$. Similarly, $\exists M_B > 0 \rightarrow \forall x \in B \ |x| < M_B$. Therefore, any $x \in A \cup B$ satisfies $|x| < M \equiv \max(M_A, M_B)$, *i.e.*, $A \cup B$ is bounded.
 - **Bolzano-Weierstrass** : Let $\{x_n\}$ be a sequence in $A \cup B$. We must show that $\{x_n\}$ contains a subsequence that converges to a point in $A \cup B$. Since there are infinitely many points in $\{x_n\}$, there must be infinitely points of $\{x_n\}$ in at least one of A or B, *i.e.*, $\{x_n\}$ must contain a subsequence that is either strictly in A or strictly in B. Suppose $\{x_n\}$ has a subsequence $\{a_n\} \subseteq A$. Since A is compact, $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ that converges to a point $a \in A$. But $\{a_{n_k}\} \subseteq A \subseteq A \cup B$, so $\{a_{n_k}\}$ is a subsequence of $\{x_n\}$ that converges to a point $a \in A \subseteq A \cup B$. \Box
 - **Heini-Borel** : Let \mathcal{U} be an open cover of $A \cup B$. We must show that \mathcal{U} contains a finite subcover of $A \cup B$. Since \mathcal{U} covers $A \cup B$, it certainly covers A, and since A is compact, \mathcal{U} contains a finite subcover of A, say $\{U_1, \ldots, U_n\}$. Similarly, \mathcal{U} covers B, so it contains finite subcover of B, say $\{V_1, \ldots, V_m\}$. Therefore,

$$\{U_1,\ldots,U_n\} \bigcup \{V_1,\ldots,V_m\}$$

is a finite subcollection of \mathcal{U} that covers $A \cup B$.

THE END