Mathematics 3A03 - Real Analysis I

TERM TEST \#1 - 4 March 2019
Duration: 90 minutes

- Print your name and student number clearly in the space below, with one character in each box.
- Write your signature here: \qquad -

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 10 pages (i.e., 5 double-sided pages). There are 7 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final four pages are blank to provide extra space if needed.
- The first 4 questions do not require any justification for your answers. For these, you will be assessed on your answers only. Do not justify your answers to these questions.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50 .

GOOD LUCK and ENJOY!

MARKS
[3] QUESTION 1. (Circle the correct answer.) For each of the following sets, determine whether it is Countable or Uncountable. Do not justify your answers.
(a) $\mathbb{R} \backslash \mathbb{Q}$

Countable Uncountable

(b) $\mathbb{Z} \times \mathbb{Q}$

Countable Uncountable
(c) $\mathbb{N} \cup \mathbb{Q}$

Countable Uncountable

[5] QUESTION 2. (Circle the correct answer.) Determine whether each the following statements is True or False. Do not justify your answers.
(a) Every non-empty subset of \mathbb{Q} has a least element.

True False
(b) Every bounded sequence of real numbers converges.

True False
(c) Every convergent sequence of real numbers is a Cauchy sequence.

True False
(d) Every Cauchy sequence of real numbers is monotonic.

True False
(e) Every surjective function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bijection.

True False
[9] QUESTION 3. For each of the sets E in the table below, answer YES or NO in each column to indicate whether or not E is open, dense in \mathbb{R}, or compact. Do not justify your answers.

Set E	Open?	Dense in $\mathbb{R} ?$	Compact?
$(0,1) \cap \mathbb{Q}$			
\varnothing			
$\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$			

[6] QUESTION 4. For each of the sets E in the table below, fill in the associated point or set in each column, i.e., for each set E state the least upper bound $(\sup (E))$, the interior $\left(E^{\circ}\right)$, and the boundary (∂E). If the requested point or set does not exist, then indicate this with the symbol \nexists. Do not justify your answers.

E	$\sup (E)$	E°	∂E
$(-\sqrt{2}, \sqrt{2})$			
$\left\{-\frac{1}{\sqrt{1+n^{2}}}: n \in \mathbb{N}\right\}$			

[10] QUESTION 5.
(a) State the formal definition of "the sequence $\left\{s_{n}\right\}$ converges to L as $n \rightarrow \infty$ ".
(b) Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers that converges to a as $n \rightarrow \infty$. Use the formal definition to prove that the sequence $\left\{a_{n}+\frac{1}{n^{2}}\right\}$ also converges to a as $n \rightarrow \infty$.
[10] QUESTION 6.
(a) (Fill in the blanks.)

The Bolzano-Weierstrass theorem (BWT) states that every \qquad sequence of real numbers contains a \qquad subsequence.
(b) Prove or disprove: If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both bounded then $\left\{a_{n} b_{n}\right\}$ contains a convergent subsequence.
(c) Prove or disprove: If $\left\{a_{n}\right\}$ contains a divergent subsequence and $\left\{b_{n}\right\}$ contains a divergent subsequence then $\left\{a_{n} b_{n}\right\}$ diverges.

[7] QUESTION 7.

(a) State one of the three equivalent conditions that can be used to define compact subsets of \mathbb{R}, and
(b) use the property you stated in part (a) to prove that if A and B are both non-empty, compact subsets of \mathbb{R} then $A \cup B$ is also compact.

This page has been left blank intentionally to provide extra space if needed.

This page has been left blank intentionally to provide extra space if needed.

This page has been left blank intentionally to provide extra space if needed.

This page has been left blank intentionally to provide extra space if needed.

