Mathematics 3A03 — Real Analysis I

TERM TEST #1 — 4 March 2019

in

Duration: 90 minutes

Notes:

• No calculators, notes, scrap paper, or aids of any kind are permitted.

• Write your signature here:

- This test consists of 10 pages (i.e., 5 double-sided pages). There are 7 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final four pages are blank to provide extra space if needed.
- The first 4 questions do not require any justification for your answers. For these, you will be assessed on your answers only. Do <u>not</u> justify your answers to these questions.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50.

GOOD LUCK and ENJOY!

MARKS

[3]	QUESTION 1.	(Circle the	e correct ansu	er.) For	each o	of the	following	sets,	determine
	whether it is C_0	ountable or	Uncountable	e. Do <u>no</u>	t justify	your	answers.		

(a) $\mathbb{R} \setminus \mathbb{Q}$

Countable Uncountable

(b) $\mathbb{Z} \times \mathbb{Q}$

Countable Uncountable

(c) $\mathbb{N} \cup \mathbb{Q}$

Countable Uncountable

[5] **QUESTION 2.** (Circle the correct answer.) Determine whether each the following statements is **True** or **False**. Do <u>not</u> justify your answers.

(a) Every non-empty subset of $\mathbb Q$ has a least element.

True False

(b) Every bounded sequence of real numbers converges.

True False

(c) Every convergent sequence of real numbers is a Cauchy sequence.

True False

(d) Every Cauchy sequence of real numbers is monotonic.

True False

(e) Every surjective function $f: \mathbb{R} \to \mathbb{R}$ is a bijection.

True False

[9] **QUESTION 3.** For each of the sets E in the table below, answer **YES** or **NO** in each column to indicate whether or not E is open, dense in \mathbb{R} , or compact. Do <u>not</u> justify your answers.

$\mathbf{Set}\ E$	Open?	Dense in \mathbb{R} ?	Compact?
$(0,1)\cap \mathbb{Q}$			
Ø			
$\{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$			

[6] **QUESTION 4.** For each of the sets E in the table below, fill in the associated point or set in each column, *i.e.*, for each set E state the least upper bound $(\sup(E))$, the interior (E°) , and the boundary (∂E) . If the requested point or set does not exist, then indicate this with the symbol $\not\equiv$. Do <u>not</u> justify your answers.

E	$\sup\left(E\right)$	E°	∂E
$(-\sqrt{2},\sqrt{2})$			
$\left\{-\frac{1}{\sqrt{1+n^2}}: n \in \mathbb{N}\right\}$			

[10] QUESTION 5.

(a) State the formal definition of "the sequence $\{s_n\}$ converges to L as $n \to \infty$ ".

(b) Suppose $\{a_n\}$ is a sequence of real numbers that converges to a as $n \to \infty$. Use the formal definition to prove that the sequence $\left\{a_n + \frac{1}{n^2}\right\}$ also converges to a as $n \to \infty$.

[10] QUESTION 6.

(a) (Fill in the blanks.)

The Bolzano-Weierstrass theorem (BWT) states that every _____ sequence of real numbers contains a _____ subsequence.

(b) Prove or disprove: If $\{a_n\}$ and $\{b_n\}$ are both bounded then $\{a_nb_n\}$ contains a convergent subsequence.

(c) Prove or disprove: If $\{a_n\}$ contains a divergent subsequence and $\{b_n\}$ contains a divergent subsequence then $\{a_nb_n\}$ diverges.

[7] QUESTION 7.

- (a) State one of the three equivalent conditions that can be used to define compact subsets of \mathbb{R} , and
- (b) use the property you stated in part (a) to prove that if A and B are both non-empty, compact subsets of $\mathbb R$ then $A \cup B$ is also compact.