Mathematics 3A03 - Real Analysis I

TERM TEST \# 2 - 26 November 2019
Duration: 90 minutes

- Print your name and student number clearly in the space below, with one character in each box.
- Write your signature here: \qquad .

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 10 pages (i.e., 5 double-sided pages). There are 5 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. There is a blank page after questions 2, 4 and 5, and an additional blank page at the end.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50 .
- Please carefully remove the staple from your test before handing it in.

GOOD LUCK and ENJOY!

MARKS
[6] QUESTION 1. (Circle the correct answer.) Determine whether each of the following statements is TRUE or FALSE. Do not justify your answers.
(a) Every continuous function is differentiable.

TRUE FALSE

(b) Some integrable functions map compact sets to compact sets.

TRUE FALSE

(c) For any integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$, the function $F(x)=\int_{0}^{x} f$ is continuous.

TRUE FALSE

(d) Every differentiable function on a closed interval $[a, b]$ has a maximum and minimum value on $[a, b]$.

TRUE FALSE
(e) The instructor for this course is Neil Armstrong.

TRUE FALSE

(f) If f is the second derivative of a function (i.e., $f=g^{\prime \prime}$ for some function g) then f has the intermediate value property.

TRUE FALSE
[12] QUESTION 2. Suppose $a<b$ and consider the interval $I=(a, b)$.
[2] (a) State the formal $\varepsilon-\delta$ definition of "the function $f: I \rightarrow \mathbb{R}$ is continuous at the point $c \in I$ ".
(b) State the formal ε - δ definition of "the function $f: I \rightarrow \mathbb{R}$ is uniformly continuous on the interval I ".
(c) Consider the interval $I=(0,1)$, and suppose $f: I \rightarrow \mathbb{R}$ is uniformly continuous on I. In addition, define $g: I \rightarrow \mathbb{R}$ via

$$
g(x)=f(x)+x, \quad \text { for all } x \in I .
$$

Prove directly from the formal $\varepsilon-\delta$ definition that g is uniformly continuous on I.

This page has been left blank to provide space for your solution of question 2(c) if needed.

[10] QUESTION 3.

[3] (a) State the formal definition of "the function f is differentiable at the point $c \in \mathbb{R}$ ".
[3] (b) State the Mean Value Theorem (MVT).
[4] (c) Suppose $a<b$ and f is differentiable on $[a, b]$. Prove that if $f^{\prime}(x) \geq M$ for all $x \in[a, b]$, then $f(b) \geq f(a)+M(b-a)$.

[12] QUESTION 4.

Suppose $a<c<b$ and that $f(x)$ is integrable on $[a, b]$. Prove that f is integrable on each of the two subintervals, $[a, c]$ and $[c, b]$. Show, moreover, that

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

This page has been left blank intentionally to provide extra space for your solution of question 4 if needed.
[10] QUESTION 5. Suppose that $\left\{f_{n}\right\}$ is a sequence of functions defined on $[a, b]$, and that f is another function defined on $[a, b]$.
(a) State the formal definition of "the sequence $\left\{f_{n}\right\}$ converges pointwise on $[a, b]$ to f ".
[2] (b) State the formal definition of "the sequence $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$ to f ".
[6] (c) Consider the following proposition and circle TRUE or FALSE. Support your claim with either a proof or a counterexample (there is space on the next page).

If each f_{n} is continuous on $[a, b]$ and $\left\{f_{n}\right\}$ converges pointwise to f then f is continuous on $[a, b]$.

TRUE FALSE

This page has been left blank to provide space for your solution of question 5(c).
... Continued. . .

This page has been left blank intentionally to provide extra space if needed.

