Mathematics 3A03 — Real Analysis I

TERM TEST #1 - 29 October 2019

Duration: 90 minutes

• Print your name and student number clearly in the space below, with one character in each box.

• Write your signature here: _____

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of **10 pages** (*i.e.*, **5 double-sided pages**). There are **7 questions** in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. There is one blank page after question 6 and an additional three blank pages at the end.
- The first 4 questions do not require any justification for your answers. For these, you will be assessed on your answers only. *Do <u>not</u> justify your answers to these questions.*
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 60.

GOOD LUCK and ENJOY!

MARKS

- [2] **QUESTION 1.** (*Circle the correct answer.*) For each of the following sets, determine whether it is **Countable** or **Uncountable**. Do <u>not</u> justify your answers.
 - (a) $\mathbb{N} \cap \mathbb{R}$ Countable Uncountable (b) $\{2^{k/2}k^n : n \in \mathbb{N}, k \in \mathbb{Z}\}$ Countable Uncountable
- [6] **QUESTION 2.** (*Circle the correct answer.*) Determine whether each of the following statements is **TRUE** or **FALSE**. Do <u>not</u> justify your answers.
 - (a) If $A \subseteq \mathbb{Q}$ is bounded and $A \neq \emptyset$ then A has a least upper bound that is a rational number.

(b) Every non-empty subset of \mathbb{N} is bounded below.

TRUE FALSE

- (c) For all $x, y \in \mathbb{R}$, $|2x + 3y| \le 2|x| + 3|y|$. **TRUE FALSE**
- (d) If $f : A \to B$ is uniformly continuous on A then it is still possible that there is a point $a \in A$ where f is discontinuous.

FALSE TRUE

(e) Every Cauchy sequence of real numbers converges.

FALSE

(f) Every bijective function $f : \mathbb{R} \to \mathbb{R}$ is one-to-one.

TRUE

[9] **QUESTION 3.** For each of the sets E in the table below, answer **YES** or **NO** in each column to indicate whether or not E is open, dense in \mathbb{R} , or compact. Do <u>not</u> justify your answers.

Set E	Open?	Dense in \mathbb{R} ?	Compact?
\mathbb{R}	YES	YES	NO
$\{3x + 2y : x, y \in \mathbb{R} \setminus \mathbb{Q}\}\$	NO	YES	NO
$\left\{\sqrt{2}\right\} \cup \left\{\frac{\sqrt{2}}{n+1} : n \in \mathbb{N}\right\}$	NO	NO	NO

[6] **QUESTION 4.** For each of the sets E in the table below, fill in the associated point or set in each column, *i.e.*, for each set E state the greatest lower bound $(\inf(E))$, the closure (\overline{E}) , and the boundary (∂E) . If the requested point or set does not exist, then indicate this with the symbol \nexists . Do <u>not</u> justify your answers.

E	$\inf(E)$	\overline{E}	∂E
\mathbb{N}	1	E	E
$\{\sqrt{2}\} \cup \left\{\frac{\sqrt{2}}{n+1} : n \in \mathbb{N}\right\}$	0	$E \cup \{0\}$	$E \cup \{0\}$

[10] QUESTION 5.

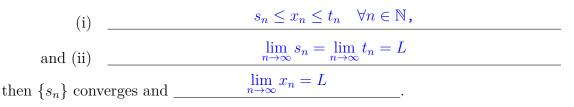
- [3] (a) Complete the formal definition: Let $E \subseteq \mathbb{R}$ and $f: E \to \mathbb{R}$. Suppose x_0 is <u>an accumulation point of E</u>. Then f is said to approach the limit L as x approaches x_0 if and only if for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$, $x \neq x_0$, and $|x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$. Equivalently: $\forall \varepsilon > 0 \exists \delta > 0 \) \ (x \in E \land 0 < |x - x_0| < \delta) \implies |f(x) - L| < \varepsilon$.
- [7] (b) Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x + 1. Use the formal definition to prove that f(x) approaches 4 as x approaches 1.

Proof. Given $\varepsilon > 0$, we must find $\delta > 0$ such that if $x \in \mathbb{R}$ and $0 < |x - 1| < \delta$ then $|(3x + 1) - 4| < \varepsilon$. Note that |(3x + 1) - 4| = |3x - 3| = 3 |x - 1|. Therefore, given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{3}$. Then, if $|x - 1| < \delta$, $|(3x + 1) - 4| = |3x - 3| = 3 |x - 1| < 3\delta = 3\frac{\varepsilon}{3} = \varepsilon$,

as required.

$[13] \quad \mathbf{QUESTION} \ \mathbf{6}.$

- [3] (a) (*Fill in the blanks.*) The **completeness axiom** for the set of real numbers states that if $E \subseteq \mathbb{R}, \underline{E \neq \emptyset}$ and <u>E is bounded</u> then E has <u>a least upper bound</u>.
- [3] (b) (*Fill in the blanks.*) Suppose that $\{a_n\}$ and $\{b_n\}$ are convergent sequences of real numbers, and $\{s_n\}$ is another sequence of real numbers. The squeeze theorem for sequences states that if



[7] (c) Suppose that $E \subseteq \mathbb{R}$ and that E has a least upper bound (sup $E = \alpha$). Prove that there is a sequence $\{e_n\}$ such that $e_n \in E$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} e_n = \alpha$.

<u>*Hint:*</u> Consider two cases: $\alpha \in E$ or $\alpha \notin E$. In the latter case, for any $\varepsilon > 0$ there exists $x \in E$ such that $x > \alpha - \varepsilon$.

Let's consider the two cases, as suggested. (Note that in order to establish the result, it isn't actually necessary to consider the case $\alpha \in E$ separately. But that case is simpler, so it provided an opportunity to get somewhere without solving the full problem.)

Case $\alpha \in E$: In this case, just take $e_n = \alpha$ for all $n \in \mathbb{N}$. Then $e_n \to \alpha$ trivially.

Case $\alpha \notin E$: First, let's verify the statement in the hint. Suppose, in order to derive a contradiction, that the statement in the hint is false. Thus, there exists $\varepsilon > 0$ such that for all $x \in E$, $x \leq \alpha - \varepsilon$. But then $\alpha - \varepsilon$ is an upper bound for E that is less than $\alpha = \sup E$. $\Rightarrow \Leftarrow$. Therefore, the statement in the hint is true.

Since the statement in the hint is true, we can take advantage of it for $\varepsilon = \frac{1}{n}$, for any $n \in \mathbb{N}$. Thus for all $n \in \mathbb{N}$, there exists $e_n \in E$ such that $e_n > \alpha - \frac{1}{n}$. Moreover, since $e_n \in E$ we must have $e_n \leq \sup E = \alpha$. Thus,

$$\alpha - \frac{1}{n} < e_n \le \alpha, \qquad \forall n \in \mathbb{N}.$$
(*)

We can now exploit the squeeze theorem: let $s_n = \alpha - \frac{1}{n}$ and $t_n = \alpha$ for all n. Then $s_n \to \alpha$ and $t_n \to \alpha$. Moreover, from (*) we have $s_n \leq e_n \leq t_n$ for all n. Hence, the Squeeze theorem implies that $e_n \to \alpha$.

This page has been left blank intentionally to provide extra space for question 6 if needed. Note that question 7 is on the next page.

- [14] **QUESTION 7.** A set $E \subseteq \mathbb{R}$ is *compact* if and only if it satisfies any of the following three equivalent properties. Complete the definition of each property:
- [1] (a) E is closed and <u>bounded</u>;
- [2] (b) E has the Bolzano-Weierstrass property, *i.e.*, every sequence in E ...

contains a subsequence that converges to a point in E.

[2] (c) E has the Heine-Borel property, *i.e.*, every open cover of E ...

contains a finite subcover of E.

[9] (d) Use one of the definitions above to prove that if A and B are both non-empty, compact subsets of \mathbb{R} then $A \cup B$ is also compact.

<u>Note</u>: If you choose definition (a) then as part of your solution you <u>must prove</u> that the union of two closed sets is closed.

- **closed and bounded:** Recall that E' refers to the set of accumulation points of a set E, and E is closed iff $E' \subseteq E$.
 - $A \cup B$ is closed: Let $x \in (A \cup B)'$. We must show that $x \in A \cup B$. If $x \in A'$ then $x \in A$ because A is closed; hence $x \in A \cup B$. Similarly, if $x \in B'$ then $x \in B$ because B is closed; hence $x \in A \cup B$. If $x \notin A'$ and $x \notin B'$ then there is a deleted neighbourhood of x that contains no points of A and no points of B, *i.e.*, no points of $A \cup B$, contradicting the fact that x is an accumulation point of $A \cup B$. Thus, either $x \in A'$ or $x \in B'$ (or both), which we have seen implies that $x \in A \cup B$.
 - $A \cup B$ is bounded: Since A is bounded, there exists $M_A > 0$ such that $\forall x \in A$, $|x| < M_A$. Similarly, $\exists M_B > 0$ $\Rightarrow \forall x \in B |x| < M_B$. Therefore, any $x \in A \cup B$ satisfies $|x| < M \equiv \max(M_A, M_B)$, *i.e.*, $A \cup B$ is bounded.

This page has been left blank intentionally to provide extra space if needed.

- **Bolzano-Weierstrass** : Let $\{x_n\}$ be a sequence in $A \cup B$. We must show that $\{x_n\}$ contains a subsequence that converges to a point in $A \cup B$. Since there are infinitely many points in $\{x_n\}$, there must be infinitely points of $\{x_n\}$ in at least one of A or B, *i.e.*, $\{x_n\}$ must contain a subsequence that is either strictly in A or strictly in B. Suppose $\{x_n\}$ has a subsequence $\{a_n\} \subseteq A$. Since A is compact, $\{a_n\}$ has a subsequence $\{a_{n_k}\}$ that converges to a point $a \in A$. But $\{a_{n_k}\} \subseteq A \subseteq A \cup B$, so $\{a_{n_k}\}$ is a subsequence of $\{x_n\}$ that converges to a point $a \in A \subseteq A \cup B$.
- **Heini-Borel** : Let \mathcal{U} be an open cover of $A \cup B$. We must show that \mathcal{U} contains a finite subcover of $A \cup B$. Since \mathcal{U} covers $A \cup B$, it certainly covers A, and since A is compact, \mathcal{U} contains a finite subcover of A, say $\{U_1, \ldots, U_n\}$. Similarly, \mathcal{U} covers B, so it contains a finite subcover of B, say $\{V_1, \ldots, V_m\}$. Therefore,

$$\{U_1,\ldots,U_n\} \bigcup \{V_1,\ldots,V_m\}$$

is a finite subcollection of \mathcal{U} that covers $A \cup B$.

This page has been left blank intentionally to provide extra space if needed.

This page has been left blank intentionally to provide extra space if needed.

THE END