
Mathematics 3A03 — Real Analysis I
TERM TEST #1 — 29 October 2019

Duration: 90 minutes

• Print your name and student number clearly in the space below, with one character in
each box.

• Write your signature here: .

Notes:

• No calculators, notes, scrap paper, or aids of any kind are permitted.
• This test consists of 10 pages (i.e., 5 double-sided pages). There are 7 questions

in total. Bring any discrepancy to the attention of your instructor or invigilator.
• All questions are to be answered on this test paper. There is one blank page after

question 6 and an additional three blank pages at the end.
• The first 4 questions do not require any justification for your answers. For these, you

will be assessed on your answers only. Do not justify your answers to these questions.
• Always write clearly. An answer that cannot be deciphered cannot be marked.
• The marking scheme is indicated in the margin. The maximum total mark is 60.



GOOD LUCK and ENJOY!

MARKS

[2] QUESTION 1. (Circle the correct answer.) For each of the following sets, determine
whether it is Countable or Uncountable. Do not justify your answers.

(a) N ∩ R Countable Uncountable

(b)
{

2k/2kn : n ∈ N, k ∈ Z
}

Countable Uncountable

[6] QUESTION 2. (Circle the correct answer.) Determine whether each of the following
statements is TRUE or FALSE. Do not justify your answers.

(a) If A ⊆ Q is bounded and A 6= ∅ then A has a least upper bound that is a
rational number.

TRUE FALSE

(b) Every non-empty subset of N is bounded below.

TRUE FALSE

(c) For all x, y ∈ R, |2x+ 3y| ≤ 2 |x|+ 3 |y|.

TRUE FALSE

(d) If f : A→ B is uniformly continuous on A then it is still possible that there
is a point a ∈ A where f is discontinuous.

TRUE FALSE

(e) Every Cauchy sequence of real numbers converges.

TRUE FALSE

(f) Every bijective function f : R→ R is one-to-one.

TRUE FALSE



[9] QUESTION 3. For each of the sets E in the table below, answer YES or NO in each
column to indicate whether or not E is open, dense in R, or compact. Do not justify your
answers.

Set E Open? Dense in R? Compact?

R YES YES NO

{3x + 2y : x, y ∈ R \Q} NO YES NO

{
√

2} ∪
{ √

2
n+1 : n ∈ N

}
NO NO NO

[6] QUESTION 4. For each of the sets E in the table below, fill in the associated point or set
in each column, i.e., for each set E state the greatest lower bound (inf(E)), the closure (E),
and the boundary (∂E). If the requested point or set does not exist, then indicate this with
the symbol @. Do not justify your answers.

E inf (E) E ∂E

N 1 E E

{
√

2} ∪
{ √

2
n+1 : n ∈ N

} 0 E ∪ {0} E ∪ {0}



[10] QUESTION 5.

(a) Complete the formal definition:[3]

Let E ⊆ R and f : E → R. Suppose x0 is an accumulation point of E . Then
f is said to approach the limit L as x approaches x0 if and only if
for all ε > 0 there exists δ > 0 such that if x ∈ E, x 6= x0, and |x− x0| < δ then
|f(x)− L| < ε.

Equivalently: ∀ε > 0 ∃δ > 0 )–
(
x ∈ E ∧ 0 < |x− x0| < δ

)
=⇒ |f(x)− L| < ε.

(b) Consider the function f : R→ R defined by f(x) = 3x+ 1. Use the formal definition to[7]

prove that f(x) approaches 4 as x approaches 1.

Proof. Given ε > 0, we must find δ > 0 such that if x ∈ R and 0 < |x− 1| < δ then
|(3x+ 1)− 4| < ε.
Note that |(3x+ 1)− 4| = |3x− 3| = 3 |x− 1|.

Therefore, given ε > 0, choose δ = ε

3. Then, if |x− 1| < δ,

|(3x+ 1)− 4| = |3x− 3| = 3 |x− 1| < 3δ = 3ε3 = ε ,

as required.



[13] QUESTION 6.

(a) (Fill in the blanks.) The completeness axiom for the set of real numbers states that if[3]

E ⊆ R, E 6= ∅ and E is bounded then E has a least upper bound .

(b) (Fill in the blanks.) Suppose that {an} and {bn} are convergent sequences of real num-[3]

bers, and {sn} is another sequence of real numbers. The squeeze theorem for se-
quences states that if

(i) sn ≤ xn ≤ tn ∀n ∈ N,

and (ii) lim
n→∞

sn = lim
n→∞

tn = L

then {sn} converges and lim
n→∞

xn = L .

(c) Suppose that E ⊆ R and that E has a least upper bound (supE = α). Prove that there[7]

is a sequence {en} such that en ∈ E for all n ∈ N and lim
n→∞

en = α.

Hint: Consider two cases: α ∈ E or α 6∈ E. In the latter case, for any ε > 0 there exists
x ∈ E such that x > α− ε.

Let’s consider the two cases, as suggested. (Note that in order to establish the result, it
isn’t actually necessary to consider the case α ∈ E separately. But that case is simpler,
so it provided an opportunity to get somewhere without solving the full problem.)

Case α ∈ E: In this case, just take en = α for all n ∈ N. Then en → α trivially.
Case α 6∈ E: First, let’s verify the statement in the hint. Suppose, in order to derive a

contradiction, that the statement in the hint is false. Thus, there exists ε > 0 such
that for all x ∈ E, x ≤ α− ε. But then α− ε is an upper bound for E that is less
than α = supE. ⇒⇐. Therefore, the statement in the hint is true.
Since the statement in the hint is true, we can take advantage of it for ε = 1

n
, for

any n ∈ N. Thus for all n ∈ N, there exists en ∈ E such that en > α− 1
n
. Moreover,

since en ∈ E we must have en ≤ supE = α. Thus,

α− 1
n
< en ≤ α, ∀n ∈ N. (∗)

We can now exploit the squeeze theorem: let sn = α− 1
n

and tn = α for all n. Then
sn → α and tn → α. Moreover, from (*) we have sn ≤ en ≤ tn for all n. Hence, the
Squeeze theorem implies that en → α.



This page has been left blank intentionally to provide extra space for question 6 if needed.
Note that question 7 is on the next page.



[14] QUESTION 7. A set E ⊆ R is compact if and only if it satisfies any of the following
three equivalent properties. Complete the definition of each property:
(a) E is closed and bounded ;[1]

(b) E has the Bolzano-Weierstrass property, i.e., every sequence in E . . .[2]

contains a subsequence that converges to a point in E.

(c) E has the Heine-Borel property, i.e., every open cover of E . . .[2]

contains a finite subcover of E.

(d) Use one of the definitions above to prove that if A and B are both non-empty, compact[9]

subsets of R then A ∪B is also compact.
Note: If you choose definition (a) then as part of your solution you must prove that
the union of two closed sets is closed.

closed and bounded: Recall that E ′ refers to the set of accumulation points of a set
E, and E is closed iff E ′ ⊆ E.
A ∪B is closed: Let x ∈ (A∪B)′. We must show that x ∈ A∪B. If x ∈ A′ then

x ∈ A because A is closed; hence x ∈ A ∪ B. Similarly, if x ∈ B′ then x ∈ B
because B is closed; hence x ∈ A ∪ B. If x /∈ A′ and x /∈ B′ then there is a
deleted neighbourhood of x that contains no points of A and no points of B,
i.e., no points of A∪B, contradicting the fact that x is an accumulation point
of A∪B. Thus, either x ∈ A′ or x ∈ B′ (or both), which we have seen implies
that x ∈ A ∪B.

A ∪B is bounded: Since A is bounded, there exists MA > 0 such that ∀x ∈ A,
|x| < MA. Similarly, ∃MB > 0 )– ∀x ∈ B |x| < MB. Therefore, any x ∈ A∪B
satisfies |x| < M ≡ max(MA,MB), i.e., A ∪B is bounded.
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Bolzano-Weierstrass : Let {xn} be a sequence in A∪B. We must show that {xn} contains
a subsequence that converges to a point in A∪B. Since there are infinitely many points
in {xn}, there must be infinitely points of {xn} in at least one of A or B, i.e., {xn}
must contain a subsequence that is either strictly in A or strictly in B. Suppose {xn}
has a subsequence {an} ⊆ A. Since A is compact, {an} has a subsequence {ank

} that
converges to a point a ∈ A. But {ank

} ⊆ A ⊆ A ∪ B, so {ank
} is a subsequence of

{xn} that converges to a point a ∈ A ⊆ A ∪B.

Heini-Borel : Let U be an open cover of A ∪ B. We must show that U contains a finite
subcover of A∪B. Since U covers A∪B, it certainly covers A, and since A is compact,
U contains a finite subcover of A, say {U1, . . . , Un}. Similarly, U covers B, so it contains
a finite subcover of B, say {V1, . . . , Vm}. Therefore,

{U1, . . . , Un}
⋃
{V1, . . . , Vm}

is a finite subcollection of U that covers A ∪B.
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THE END


