Mathematics 3A03 - Real Analysis I

TERM TEST \#1 - 29 October 2019
Duration: 90 minutes

- Print your name and student number clearly in the space below, with one character in each box.
- Write your signature here: \qquad .

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 10 pages (i.e., $\mathbf{5}$ double-sided pages). There are $\mathbf{7}$ questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. There is one blank page after question 6 and an additional three blank pages at the end.
- The first 4 questions do not require any justification for your answers. For these, you will be assessed on your answers only. Do not justify your answers to these questions.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 60 .

GOOD LUCK and ENJOY!

MARKS
[2] QUESTION 1. (Circle the correct answer.) For each of the following sets, determine whether it is Countable or Uncountable. Do not justify your answers.
(a) $\mathbb{N} \cap \mathbb{R}$
Countable
Uncountable
(b) $\left\{2^{k / 2} k^{n}: n \in \mathbb{N}, k \in \mathbb{Z}\right\}$
Countable
Uncountable
[6] QUESTION 2. (Circle the correct answer.) Determine whether each of the following statements is TRUE or FALSE. Do not justify your answers.
(a) If $A \subseteq \mathbb{Q}$ is bounded and $A \neq \varnothing$ then A has a least upper bound that is a rational number.

TRUE FALSE

(b) Every non-empty subset of \mathbb{N} is bounded below.

TRUE FALSE
(c) For all $x, y \in \mathbb{R},|2 x+3 y| \leq 2|x|+3|y|$.

TRUE FALSE

(d) If $f: A \rightarrow B$ is uniformly continuous on A then it is still possible that there is a point $a \in A$ where f is discontinuous.

TRUE FALSE
(e) Every Cauchy sequence of real numbers converges.

TRUE FALSE
(f) Every bijective function $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one.

TRUE FALSE
[9] QUESTION 3. For each of the sets E in the table below, answer YES or NO in each column to indicate whether or not E is open, dense in \mathbb{R}, or compact. Do not justify your answers.

Set E	Open?	Dense in $\mathbb{R} ?$	Compact?
\mathbb{R}	YES	YES	NO
$\{3 x+2 y: x, y \in \mathbb{R} \backslash \mathbb{Q}\}$	NO	YES	NO
$\{\sqrt{2}\} \cup\left\{\frac{\sqrt{2}}{n+1}: n \in \mathbb{N}\right\}$	NO	NO	NO

[6] QUESTION 4. For each of the sets E in the table below, fill in the associated point or set in each column, i.e., for each set E state the greatest lower bound $(\inf (E))$, the closure (\bar{E}), and the boundary (∂E). If the requested point or set does not exist, then indicate this with the symbol \nexists. Do not justify your answers.

E	$\inf (E)$	E	∂E
\mathbb{N}	1	E	E
$\{\sqrt{2}\} \cup\left\{\frac{\sqrt{2}}{n+1}: n \in \mathbb{N}\right\}$	0	$E \cup\{0\}$	$E \cup\{0\}$

[10] QUESTION 5.

[3] (a) Complete the formal definition:
Let $E \subseteq \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$. Suppose x_{0} is \qquad . Then f is said to approach the limit L as x approaches x_{0} if and only if
for all $\varepsilon>0$ there exists $\delta>0$ such that if $x \in E, x \neq x_{0}$, and $\left|x-x_{0}\right|<\delta$ then $|f(x)-L|<\varepsilon$.
Equivalently: $\forall \varepsilon>0 \exists \delta>0)\left(x \in E \wedge 0<\left|x-x_{0}\right|<\delta\right) \Longrightarrow|f(x)-L|<\varepsilon$.
[7] (b) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=3 x+1$. Use the formal definition to prove that $f(x)$ approaches 4 as x approaches 1 .

Proof. Given $\varepsilon>0$, we must find $\delta>0$ such that if $x \in \mathbb{R}$ and $0<|x-1|<\delta$ then $|(3 x+1)-4|<\varepsilon$.
Note that $|(3 x+1)-4|=|3 x-3|=3|x-1|$.
Therefore, given $\varepsilon>0$, choose $\delta=\frac{\varepsilon}{3}$. Then, if $|x-1|<\delta$,

$$
|(3 x+1)-4|=|3 x-3|=3|x-1|<3 \delta=3 \frac{\varepsilon}{3}=\varepsilon
$$

as required.

[13] QUESTION 6.

[3] (a) (Fill in the blanks.) The completeness axiom for the set of real numbers states that if
\qquad and E is bounded then E has a least upper bound .
[3] (b) (Fill in the blanks.) Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences of real numbers, and $\left\{s_{n}\right\}$ is another sequence of real numbers. The squeeze theorem for sequences states that if

[7] (c) Suppose that $E \subseteq \mathbb{R}$ and that E has a least upper bound ($\sup E=\alpha$). Prove that there is a sequence $\left\{e_{n}\right\}$ such that $e_{n} \in E$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} e_{n}=\alpha$.
Hint: Consider two cases: $\alpha \in E$ or $\alpha \notin E$. In the latter case, for any $\varepsilon>0$ there exists $x \in E$ such that $x>\alpha-\varepsilon$.

Let's consider the two cases, as suggested. (Note that in order to establish the result, it isn't actually necessary to consider the case $\alpha \in E$ separately. But that case is simpler, so it provided an opportunity to get somewhere without solving the full problem.)

Case $\alpha \in E$: In this case, just take $e_{n}=\alpha$ for all $n \in \mathbb{N}$. Then $e_{n} \rightarrow \alpha$ trivially.
Case $\alpha \notin E$: First, let's verify the statement in the hint. Suppose, in order to derive a contradiction, that the statement in the hint is false. Thus, there exists $\varepsilon>0$ such that for all $x \in E, x \leq \alpha-\varepsilon$. But then $\alpha-\varepsilon$ is an upper bound for E that is less than $\alpha=\sup E . \Rightarrow \Leftarrow$. Therefore, the statement in the hint is true.
Since the statement in the hint is true, we can take advantage of it for $\varepsilon=\frac{1}{n}$, for any $n \in \mathbb{N}$. Thus for all $n \in \mathbb{N}$, there exists $e_{n} \in E$ such that $e_{n}>\alpha-\frac{1}{n}$. Moreover, since $e_{n} \in E$ we must have $e_{n} \leq \sup E=\alpha$. Thus,

$$
\begin{equation*}
\alpha-\frac{1}{n}<e_{n} \leq \alpha, \quad \forall n \in \mathbb{N} . \tag{*}
\end{equation*}
$$

We can now exploit the squeeze theorem: let $s_{n}=\alpha-\frac{1}{n}$ and $t_{n}=\alpha$ for all n. Then $s_{n} \rightarrow \alpha$ and $t_{n} \rightarrow \alpha$. Moreover, from $\left({ }^{*}\right)$ we have $s_{n} \leq e_{n} \leq t_{n}$ for all n. Hence, the Squeeze theorem implies that $e_{n} \rightarrow \alpha$.

This page has been left blank intentionally to provide extra space for question 6 if needed. Note that question 7 is on the next page.
[14] QUESTION 7. A set $E \subseteq \mathbb{R}$ is compact if and only if it satisfies any of the following three equivalent properties. Complete the definition of each property:
\qquad
(a) E is closed and bounded ;
(b) E has the Bolzano-Weierstrass property, i.e., every sequence in $E \ldots$
contains a subsequence that converges to a point in E.
[2] (c) E has the Heine-Borel property, i.e., every open cover of $E \ldots$
contains a finite subcover of E.
[9]
(d) Use one of the definitions above to prove that if A and B are both non-empty, compact subsets of \mathbb{R} then $A \cup B$ is also compact.
Note: If you choose definition (a) then as part of your solution you must prove that the union of two closed sets is closed.
closed and bounded: Recall that E^{\prime} refers to the set of accumulation points of a set E, and E is closed iff $E^{\prime} \subseteq E$.
$A \cup B$ is closed: Let $x \in(A \cup B)^{\prime}$. We must show that $x \in A \cup B$. If $x \in A^{\prime}$ then $x \in A$ because A is closed; hence $x \in A \cup B$. Similarly, if $x \in B^{\prime}$ then $x \in B$ because B is closed; hence $x \in A \cup B$. If $x \notin A^{\prime}$ and $x \notin B^{\prime}$ then there is a deleted neighbourhood of x that contains no points of A and no points of B, i.e., no points of $A \cup B$, contradicting the fact that x is an accumulation point of $A \cup B$. Thus, either $x \in A^{\prime}$ or $x \in B^{\prime}$ (or both), which we have seen implies that $x \in A \cup B$.
$A \cup B$ is bounded: Since A is bounded, there exists $M_{A}>0$ such that $\forall x \in A$, $|x|<M_{A}$. Similarly, $\exists M_{B}>0 \forall \forall x \in B|x|<M_{B}$. Therefore, any $x \in A \cup B$ satisfies $|x|<M \equiv \max \left(M_{A}, M_{B}\right)$, i.e., $A \cup B$ is bounded.

This page has been left blank intentionally to provide extra space if needed.

Bolzano-Weierstrass : Let $\left\{x_{n}\right\}$ be a sequence in $A \cup B$. We must show that $\left\{x_{n}\right\}$ contains a subsequence that converges to a point in $A \cup B$. Since there are infinitely many points in $\left\{x_{n}\right\}$, there must be infinitely points of $\left\{x_{n}\right\}$ in at least one of A or B, i.e., $\left\{x_{n}\right\}$ must contain a subsequence that is either strictly in A or strictly in B. Suppose $\left\{x_{n}\right\}$ has a subsequence $\left\{a_{n}\right\} \subseteq A$. Since A is compact, $\left\{a_{n}\right\}$ has a subsequence $\left\{a_{n_{k}}\right\}$ that converges to a point $a \in A$. But $\left\{a_{n_{k}}\right\} \subseteq A \subseteq A \cup B$, so $\left\{a_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ that converges to a point $a \in A \subseteq A \cup B$.

Heini-Borel : Let \mathcal{U} be an open cover of $A \cup B$. We must show that \mathcal{U} contains a finite subcover of $A \cup B$. Since \mathcal{U} covers $A \cup B$, it certainly covers A, and since A is compact, \mathcal{U} contains a finite subcover of A, say $\left\{U_{1}, \ldots, U_{n}\right\}$. Similarly, \mathcal{U} covers B, so it contains a finite subcover of B, say $\left\{V_{1}, \ldots, V_{m}\right\}$. Therefore,

$$
\left\{U_{1}, \ldots, U_{n}\right\} \bigcup\left\{V_{1}, \ldots, V_{m}\right\}
$$

is a finite subcollection of \mathcal{U} that covers $A \cup B$.

This page has been left blank intentionally to provide extra space if needed.

This page has been left blank intentionally to provide extra space if needed.

