
Mathematics 3A03 — Real Analysis I
TERM TEST #1 — 29 October 2019

Duration: 90 minutes

• Print your name and student number clearly in the space below, with one character in
each box.

• Write your signature here: .

Notes:

• No calculators, notes, scrap paper, or aids of any kind are permitted.
• This test consists of 10 pages (i.e., 5 double-sided pages). There are 7 questions

in total. Bring any discrepancy to the attention of your instructor or invigilator.
• All questions are to be answered on this test paper. There is one blank page after

question 6 and an additional three blank pages at the end.
• The first 4 questions do not require any justification for your answers. For these, you

will be assessed on your answers only. Do not justify your answers to these questions.
• Always write clearly. An answer that cannot be deciphered cannot be marked.
• The marking scheme is indicated in the margin. The maximum total mark is 60.



GOOD LUCK and ENJOY!

MARKS

[2] QUESTION 1. (Circle the correct answer.) For each of the following sets, determine
whether it is Countable or Uncountable. Do not justify your answers.

(a) N ∩ R Countable Uncountable

(b)
{

2k/2kn : n ∈ N, k ∈ Z
}

Countable Uncountable

[6] QUESTION 2. (Circle the correct answer.) Determine whether each of the following
statements is TRUE or FALSE. Do not justify your answers.

(a) If A ⊆ Q is bounded and A 6= ∅ then A has a least upper bound that is a
rational number.

TRUE FALSE

(b) Every non-empty subset of N is bounded below.

TRUE FALSE

(c) For all x, y ∈ R, |2x+ 3y| ≤ 2 |x|+ 3 |y|.

TRUE FALSE

(d) If f : A→ B is uniformly continuous on A then it is still possible that there
is a point a ∈ A where f is discontinuous.

TRUE FALSE

(e) Every Cauchy sequence of real numbers converges.

TRUE FALSE

(f) Every bijective function f : R→ R is one-to-one.

TRUE FALSE



[9] QUESTION 3. For each of the sets E in the table below, answer YES or NO in each
column to indicate whether or not E is open, dense in R, or compact. Do not justify your
answers.

Set E Open? Dense in R? Compact?

R

{3x + 2y : x, y ∈ R \Q}

{
√

2} ∪
{ √

2
n+1 : n ∈ N

}

[6] QUESTION 4. For each of the sets E in the table below, fill in the associated point or set
in each column, i.e., for each set E state the greatest lower bound (inf(E)), the closure (E),
and the boundary (∂E). If the requested point or set does not exist, then indicate this with
the symbol @. Do not justify your answers.

E inf (E) E ∂E

N

{
√

2} ∪
{ √

2
n+1 : n ∈ N

}



[10] QUESTION 5.

(a) Complete the formal definition:[3]

Let E ⊆ R and f : E → R. Suppose x0 is . Then
f is said to approach the limit L as x approaches x0 if and only if

(b) Consider the function f : R→ R defined by f(x) = 3x+ 1. Use the formal definition to[7]

prove that f(x) approaches 4 as x approaches 1.



[13] QUESTION 6.

(a) (Fill in the blanks.) The completeness axiom for the set of real numbers states that if[3]

E ⊆ R, and then E has .

(b) (Fill in the blanks.) Suppose that {an} and {bn} are convergent sequences of real num-[3]

bers, and {sn} is another sequence of real numbers. The squeeze theorem for se-
quences states that if

(i)

and (ii)

then {sn} converges and .

(c) Suppose that E ⊆ R and that E has a least upper bound (supE = α). Prove that there[7]

is a sequence {en} such that en ∈ E for all n ∈ N and lim
n→∞

en = α.

Hint: Consider two cases: α ∈ E or α 6∈ E. In the latter case, for any ε > 0 there exists
x ∈ E such that x > α− ε.



This page has been left blank intentionally to provide extra space for question 6 if needed.
Note that question 7 is on the next page.



[14] QUESTION 7. A set E ⊆ R is compact if and only if it satisfies any of the following
three equivalent properties. Complete the definition of each property:

(a) E is closed and ;[1]

(b) E has the Bolzano-Weierstrass property, i.e., every sequence in E . . .[2]

(c) E has the Heine-Borel property, i.e., every open cover of E . . .[2]

(d) Use one of the definitions above to prove that if A and B are both non-empty, compact[9]

subsets of R then A ∪B is also compact.
Note: If you choose definition (a) then as part of your solution you must prove that
the union of two closed sets is closed.
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THE END


