Student Name:	Student Number:

Mathematics 3A03 — Real Analysis I

TERM TEST #1 (Solutions)— 23 October 2017

Duration of Standard Test: 90 minutes

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 8 pages (i.e., 4 double-sided pages). There are 9 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final page is blank to provide extra space if needed.
- The first 6 questions do not require any justification for your answers. For these, you will be assessed on your answers only. Do <u>not</u> justify your answers to these questions.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50.

Question	Mark
1	
2	
3	
4	
5	
Subtotal	

Question	Mark
6	
7	
8	
9	
Subtotal	

Total	

Student Name:	
---------------	--

Student Number: _____

(Answers in Blue)

MARKS

- [1] QUESTION 1. In order to obtain any credit for this question, both parts must be answered in clear handwriting at the top of every page of this test.
 - (a) What is your name?
 - (b) What is your student number?
- [5] **QUESTION 2.** (Circle the correct answer.) For each of the following sets, determine whether it is **Countable** or **Uncountable**. Do not justify your answers.
 - (a) The interval (2,4)

Countable Uncountable

(b) $\mathbb{Z} \times \mathbb{N}$

Countable Uncountable

(c) $\mathbb{R} \times \mathbb{R}$

Countable Uncountable

(d) $\{x \in (0,1) : x \notin \mathbb{Q}\}$

Countable Uncountable

(e) $\{m + n\pi : m, n \in \mathbb{Q}\}$

Countable Uncountable

Student Name:	Student Number:

- [4] **QUESTION 3.** (Circle the correct answer.) Determine whether each the following statements is **True** or **False**. Do not justify your answers.
 - (a) Every non-empty subset of \mathbb{N} has a least element.

True False

(b) There are Cauchy sequences of real numbers that do not converge.

True False

(c) For every x > 0, there is a positive rational number $q \in \mathbb{Q}$ so that q < x.

True False

(d) Every monotone sequence converges.

True False

- [4] QUESTION 4. (Circle the correct answer.) Determine whether each the following statements is Never True, Sometimes True, or Always True. Do not justify your answers.
 - (a) If $\{x_n\}$ and $\{y_n\}$ are both convergent sequences, and $y_n \neq 0$ for all n, then $\{x_n/y_n\}$ is a convergent sequence.

Never True Sometimes True Always True

(b) If A_1, A_2, \ldots are open subsets of \mathbb{R} , then the intersection $\cap_{n \in \mathbb{N}} A_n$ is open.

Never True Sometimes True Always True

(c) Suppose $E \subset \mathbb{R}$. Then the closure of the interior of E is equal to E.

Never True Sometimes True Always True

(d) Suppose $\{x_n\}$ is a bounded, decreasing sequence. Then $\{x_n\}$ has exactly one convergent subsequence.

Never True Sometimes True Always True

[6] **QUESTION 5.** For each of the sets E in the table below, answer **YES** or **NO** in each column to indicate whether or not E is open, bounded or dense in \mathbb{R} . Do <u>not</u> justify your answers.

Set E	Open?	Bounded?	Dense in \mathbb{R} ?
$(\sqrt{2}, 3 + \sqrt{2}]$	NO	YES	NO
$\left\{m+n\pi:m,n\in\mathbb{Q}\right\}$	NO	NO	YES

[6] **QUESTION 6.** For each of the sets E in the table below, fill in the associated point or set in each column, *i.e.*, for each set E state the greatest lower bound $(\inf(E))$, the closure (\overline{E}) , and the set of accumultation points (E'). If the requested point or set does not exist, then indicate this with the symbol $\not\equiv$. Do <u>not</u> justify your answers.

Set E	$\inf\left(E ight)$	\overline{E}	E'
$(\sqrt{2}, 3 + \sqrt{2}) \cap \mathbb{Q}$			
	$\sqrt{2}$	$\left[\sqrt{2}, 3 + \sqrt{2}\right]$	$\left[\sqrt{2}, 3 + \sqrt{2}\right]$
$\left\{\frac{n+1}{n}:n\in\mathbb{N}\right\}$			
	1	$E \cup \{1\}$	1

[12] QUESTION 7.

(a) Let $\{s_n\}$ be a sequence. State the formal definition of "the sequence $\{s_n\}$ converges as $n \to \infty$ ".

Answer 1: The sequence $\{s_n\}$ converges as $n \to \infty$ if there exists some $L \in \mathbb{R}$ so that, for every $\varepsilon > 0$, there is some $N \in \mathbb{N}$ so that, for all $n \in \mathbb{N}$ with $n \ge N$,

$$|s_n - L| < \varepsilon$$
.

Answer 2: The sequence $\{s_n\}$ converges as $n \to \infty$ if there exists some $L \in \mathbb{R}$ so that, for every $\varepsilon > 0$, there is some $N \in \mathbb{N}$ so that if $n \geq N$ is an integer, then

$$|s_n - L| < \varepsilon$$
.

(b) Suppose $\{x_n\}$ is a bounded sequence. Use the formal definition to prove that the sequence $\left\{\frac{x_n}{n^2+1}\right\}$ converges as $n\to\infty$.

Proof: Take L=0 and let $\varepsilon > 0$. Since $\{x_n\}$ is bounded, there is some M so that $|x_n| \leq M$ for all $n \in \mathbb{N}$. By increasing M, if necessary, we may assume M > 0 and $M/\varepsilon - 1 > 0$. Pick $N \in \mathbb{N}$ so that

$$N > \sqrt{M/\varepsilon - 1}$$
.

If $n \geq N$ is an integer, then

$$\begin{vmatrix} \frac{x_n}{n^2+1} - L \end{vmatrix} \leq \frac{\frac{M}{n^2+1}}{\frac{M}{N^2+1}}$$

$$\leq \frac{\frac{M}{N^2+1}}{\frac{M}{M/\varepsilon - 1 + 1}}$$

$$= \varepsilon$$

Student Name:	Student Number:	

[6] **QUESTION 8.** Show that if $S \subseteq \mathbb{R}$ is open and non-empty, then S is uncountable. (You may use, without proof, the fact that the interval (0,1) is uncountable.)

Proof: Since S is non-empty, there is some $x \in S$. Since S is open, there is some $(a,b) \subset S$ with $x \in (a,b)$. In class, it was shown that if a set is countable, then any subset is also countable. Consequently, to prove that S is uncountable, it suffices to show that (a,b) is uncountable. To see this, we will construct a bijection between (a,b) and (0,1); that the latter is uncountable implies that the former is as well.

A bijection is given by the function $f:(0,1)\to(a,b)$ defined by

$$f(x) = bx + (1 - x)a = (b - a)x + a.$$

This is well-defined because if $x \in (0,1)$, then 0 < x < 1, and so

$$a < (b-a)x + a < b.$$

Hence $f(x) \in (a,b)$. This is injective because if f(x) = f(y), then (b-a)x = (b-a)y, so x = y (note that $b - a \neq 0$ because the interval (a,b) is non-empty). This is surjective because if $c \in (a,b)$, then $(b-a)^{-1}(c-a) \in (0,1)$ and $f((b-a)^{-1}(c-a)) = c$.

Student Name:	Student Number:

6] QUESTION 9. Suppose $S \subseteq \mathbb{R}$ is a closed, bounded, and non-empty set of real numbers. Show that S contains its supremum: $\sup(S) \in S$.

Proof 1: Since S is bounded and non-empty, we know that $\sup(S)$ exists. Since S is closed, we have $S = \overline{S}$, so it suffices to show that $\sup(S) \in \overline{S}$. One definition of \overline{S} is as the set of points $x \in \mathbb{R}$ so that, for all $\varepsilon > 0$, the intersection $(x - \varepsilon, x + \varepsilon) \cap S$ is non-empty. We will show this holds for $x = \sup(S)$. Let $\varepsilon > 0$. Then $\sup(S) - \varepsilon < \sup(S)$, so $\sup(S) - \varepsilon$ is not an upper bound for S. This implies there is some $y \in S$ so that

$$y > \sup(S) - \varepsilon$$
.

On the other hand, $\sup(S)$ is an upper bound, so $y \leq \sup(S)$. This implies $y \in (x - \varepsilon, x + \varepsilon) \cap S$, and hence this intersection is non-empty.

Proof 2: Since S is bounded and non-empty, we know that $\sup(S)$ exists. For sake of contradiction, assume S is closed, but $\sup(S) \notin S$. Let $\varepsilon > 0$. Then since $\sup(S)$ is the least upper bound and $\sup(S) - \varepsilon < \sup(S)$, it follows that $\sup(S) - \varepsilon$ is not an upper bound for S. This implies there is some point $x \in S$ between $\sup(S) - \varepsilon$ and $\sup(S)$; this point cannot be $\sup(S)$ because we have assumed $\sup(S)$ is not in S. Then we have that

$$S \setminus \{ \sup(S) \} \cap (\sup(S) - \varepsilon, \sup(S) + \varepsilon) \neq \emptyset$$

is non-empty. This is true for all $\varepsilon > 0$, so it follows that $\sup(S)$ is an accumulation point for S. Since S is closed, it contains all of its accumulation points, and so $\sup(S) \in S$, which is a contradiction.

Proof 3: Since S is bounded and non-empty, we know that $\sup(S)$ exists. For sake of contradiction, assume S is closed, but $\sup(S) \notin S$. Then $\sup(S)$ lies in the complement S^c . Since S is closed, the complement S^c is open. This implies that there is some $\varepsilon > 0$ so that $(\sup(S) - \varepsilon, \sup(S) + \varepsilon) \subset S^c$. Since $\sup(S)$ is an upper bound for S, all points of S are no greater than $\sup(S)$. They cannot lie in the region $(\sup(S) - \varepsilon, \sup(S))$ either, since this would contradict the fact that this set lies in S^c . Consequently, $x \leq \sup(S) - \varepsilon$ for all $x \in S$, so $\sup(S) - \varepsilon$ is an upper bound. Since $\sup(S) - \varepsilon < \sup(S)$, this contradicts the assumption that $\sup(S)$ is a least upper bound.

Proof 4: Since $S \neq \emptyset$ and S is bounded, S has a least upper bound, say $L = \sup(S)$. Given any $\varepsilon > 0$ we can find $x \in S$ such that $x > L - \varepsilon$, i.e., $L - x < \varepsilon$ (otherwise $L - \varepsilon$ would be an upper bound of S that is less than S.). Consequently, for each S, we can find S such that S such that

Student Name:	Student Number:	