\qquad
\qquad

Mathematics 3A03 - Real Analysis I

TERM TEST \#1 (Solutions) - 23 October 2017
Duration of Standard Test: 90 minutes

Notes:

- No calculators, notes, scrap paper, or aids of any kind are permitted.
- This test consists of 8 pages (i.e., 4 double-sided pages). There are 9 questions in total. Bring any discrepancy to the attention of your instructor or invigilator.
- All questions are to be answered on this test paper. The final page is blank to provide extra space if needed.
- The first 6 questions do not require any justification for your answers. For these, you will be assessed on your answers only. Do not justify your answers to these questions.
- Always write clearly. An answer that cannot be deciphered cannot be marked.
- The marking scheme is indicated in the margin. The maximum total mark is 50 .

Question	Mark
1	
2	
3	
4	
5	
Subtotal	

Question	Mark
6	
7	
8	
9	
Subtotal	

\qquad
\qquad

(Answers in Blue)

MARKS
[1] QUESTION 1. In order to obtain any credit for this question, both parts must be answered in clear handwriting at the top of every page of this test.
(a) What is your name?
(b) What is your student number?
[5] QUESTION 2. (Circle the correct answer.) For each of the following sets, determine whether it is Countable or Uncountable. Do not justify your answers.
(a) The interval $(2,4)$

Countable Uncountable
(b) $\mathbb{Z} \times \mathbb{N}$

Countable Uncountable

(c) $\mathbb{R} \times \mathbb{R}$

Countable Uncountable
(d) $\{x \in(0,1): x \notin \mathbb{Q}\}$

Countable Uncountable
(e) $\{m+n \pi: m, n \in \mathbb{Q}\}$

Countable Uncountable
\qquad Student Number: \qquad
[4] QUESTION 3. (Circle the correct answer.) Determine whether each the following statements is True or False. Do not justify your answers.
(a) Every non-empty subset of \mathbb{N} has a least element.

True False
(b) There are Cauchy sequences of real numbers that do not converge.

True False
(c) For every $x>0$, there is a positive rational number $q \in \mathbb{Q}$ so that $q<x$.

True False
(d) Every monotone sequence converges.

True False
[4] QUESTION 4. (Circle the correct answer.) Determine whether each the following statements is Never True, Sometimes True, or Always True. Do not justify your answers.
(a) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are both convergent sequences, and $y_{n} \neq 0$ for all n, then $\left\{x_{n} / y_{n}\right\}$ is a convergent sequence.

Never True Sometimes True Always True
(b) If A_{1}, A_{2}, \ldots are open subsets of \mathbb{R}, then the intersection $\cap_{n \in \mathbb{N}} A_{n}$ is open.

Never True Sometimes True Always True
(c) Suppose $E \subset \mathbb{R}$. Then the closure of the interior of E is equal to E.

Never True Sometimes True Always True
(d) Suppose $\left\{x_{n}\right\}$ is a bounded, decreasing sequence. Then $\left\{x_{n}\right\}$ has exactly one convergent subsequence.

Never True Sometimes True Always True
\qquad
\qquad
[6] QUESTION 5. For each of the sets E in the table below, answer YES or NO in each column to indicate whether or not E is open, bounded or dense in \mathbb{R}. Do not justify your answers.

Set E	Open?	Bounded?	Dense in $\mathbb{R} ?$
$(\sqrt{2}, 3+\sqrt{2}]$	NO	YES	NO
$\{m+n \pi: m, n \in \mathbb{Q}\}$	NO	NO	YES

[6] QUESTION 6. For each of the sets E in the table below, fill in the associated point or set in each column, i.e., for each set E state the greatest lower bound $(\inf (E))$, the closure (\bar{E}), and the set of accumultation points $\left(E^{\prime}\right)$. If the requested point or set does not exist, then indicate this with the symbol \ddagger. Do not justify your answers.

Set E	$\inf (E)$		E^{\prime}
$(\sqrt{2}, 3+\sqrt{2}) \cap \mathbb{Q}$			
$\left\{\frac{n+1}{n}: n \in \mathbb{N}\right\}$		$[\sqrt{2}, 3+\sqrt{2}]$	$[\sqrt{2}, 3+\sqrt{2}]$
	1	$E \cup\{1\}$	1

\qquad
\qquad

[12] QUESTION 7.

(a) Let $\left\{s_{n}\right\}$ be a sequence. State the formal definition of "the sequence $\left\{s_{n}\right\}$ converges as $n \rightarrow \infty$ ".

Answer 1: The sequence $\left\{s_{n}\right\}$ converges as $n \rightarrow \infty$ if there exists some $L \in \mathbb{R}$ so that, for every $\varepsilon>0$, there is some $N \in \mathbb{N}$ so that, for all $n \in \mathbb{N}$ with $n \geq N$,

$$
\left|s_{n}-L\right|<\varepsilon
$$

Answer 2: The sequence $\left\{s_{n}\right\}$ converges as $n \rightarrow \infty$ if there exists some $L \in \mathbb{R}$ so that, for every $\varepsilon>0$, there is some $N \in \mathbb{N}$ so that if $n \geq N$ is an integer, then

$$
\left|s_{n}-L\right|<\varepsilon .
$$

(b) Suppose $\left\{x_{n}\right\}$ is a bounded sequence. Use the formal definition to prove that the sequence $\left\{\frac{x_{n}}{n^{2}+1}\right\}$ converges as $n \rightarrow \infty$.

Proof: Take $L=0$ and let $\varepsilon>0$. Since $\left\{x_{n}\right\}$ is bounded, there is some M so that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$. By increasing M, if necessary, we may assume $M>0$ and $M / \varepsilon-1>0$. Pick $N \in \mathbb{N}$ so that

$$
N>\sqrt{M / \varepsilon-1}
$$

If $n \geq N$ is an integer, then

$$
\begin{aligned}
\left|\frac{x_{n}}{n^{2}+1}-L\right| & \leq \frac{M}{n^{2}+1} \\
& \leq \frac{M}{N^{2}+1} \\
& <\frac{M}{M / \varepsilon-1+1} \\
& =\varepsilon
\end{aligned}
$$

\qquad
\qquad
[6] QUESTION 8. Show that if $S \subseteq \mathbb{R}$ is open and non-empty, then S is uncountable. (You may use, without proof, the fact that the interval $(0,1)$ is uncountable.)

Proof: Since S is non-empty, there is some $x \in S$. Since S is open, there is some $(a, b) \subset S$ with $x \in(a, b)$. In class, it was shown that if a set is countable, then any subset is also countable. Consequently, to prove that S is uncountable, it suffices to show that (a, b) is uncountable. To see this, we will construct a bijection between (a, b) and $(0,1)$; that the latter is uncountable implies that the former is as well.

A bijection is given by the function $f:(0,1) \rightarrow(a, b)$ defined by

$$
f(x)=b x+(1-x) a=(b-a) x+a .
$$

This is well-defined because if $x \in(0,1)$, then $0<x<1$, and so

$$
a<(b-a) x+a<b
$$

Hence $f(x) \in(a, b)$. This is injective because if $f(x)=f(y)$, then $(b-a) x=(b-a) y$, so $x=y$ (note that $b-a \neq 0$ because the interval (a, b) is non-empty). This is surjective because if $c \in(a, b)$, then $(b-a)^{-1}(c-a) \in(0,1)$ and $f\left((b-a)^{-1}(c-a)\right)=c$.
[6] QUESTION 9. Suppose $S \subseteq \mathbb{R}$ is a closed, bounded, and non-empty set of real numbers. Show that S contains its supremum: $\sup (S) \in S$.

Proof 1: Since S is bounded and non-empty, we know that $\sup (S)$ exists. Since S is closed, we have $S=\bar{S}$, so it suffices to show that $\sup (S) \in \bar{S}$. One definition of \bar{S} is as the set of points $x \in \mathbb{R}$ so that, for all $\varepsilon>0$, the intersection $(x-\varepsilon, x+\varepsilon) \cap S$ is non-empty. We will show this holds for $x=\sup (S)$. Let $\varepsilon>0$. Then $\sup (S)-\varepsilon<\sup (S)$, $\operatorname{so~} \sup (S)-\varepsilon$ is not an upper bound for S. This implies there is some $y \in S$ so that

$$
y>\sup (S)-\varepsilon
$$

On the other hand, $\sup (S)$ is an upper bound, so $y \leq \sup (S)$. This implies $y \in(x-\varepsilon, x+$ $\varepsilon) \cap S$, and hence this intersection is non-empty.

Proof 2: Since S is bounded and non-empty, we know that $\sup (S)$ exists. For sake of contradiction, assume S is closed, but $\sup (S) \notin S$. Let $\varepsilon>0$. Then since $\sup (S)$ is the least upper bound and $\sup (S)-\varepsilon<\sup (S)$, it follows that $\sup (S)-\varepsilon$ is not an upper bound for S. This implies there is some point $x \in S$ between $\sup (S)-\varepsilon$ and $\sup (S)$; this point cannot be $\sup (S)$ because we have assumed $\sup (S)$ is not in S. Then we have that

$$
S \backslash\{\sup (S)\} \cap(\sup (S)-\varepsilon, \sup (S)+\varepsilon) \neq \varnothing
$$

is non-empty. This is true for all $\varepsilon>0$, so it follows that $\sup (S)$ is an accumulation point for S. Since S is closed, it contains all of its accumulation points, and so $\sup (S) \in S$, which is a contradiction.

Proof 3: Since S is bounded and non-empty, we know that $\sup (S)$ exists. For sake of contradiction, assume S is closed, but $\sup (S) \notin S$. Then $\sup (S)$ lies in the complement S^{c}. Since S is closed, the complement S^{c} is open. This implies that there is some $\varepsilon>0$ so that $(\sup (S)-\varepsilon, \sup (S)+\varepsilon) \subset S^{c}$. Since $\sup (S)$ is an upper bound for S, all points of S are no greater than $\sup (S)$. They cannot lie in the region $(\sup (S)-\varepsilon, \sup (S))$ either, since this would contradict the fact that this set lies in S^{c}. Consequently, $x \leq \sup (S)-\varepsilon$ for all $x \in S$, so $\sup (S)-\varepsilon$ is an upper bound. Since $\sup (S)-\varepsilon<\sup (S)$, this contradicts the assumption that $\sup (S)$ is a least upper bound.

Proof 4: Since $S \neq \varnothing$ and S is bounded, S has a least upper bound, say $L=\sup (S)$. Given any $\varepsilon>0$ we can find $x \in S$ such that $x>L-\varepsilon$, i.e., $L-x<\varepsilon$ (otherwise $L-\varepsilon$ would be an upper bound of S that is less than L). Consequently, for each $n \in \mathbb{N}$, we can find $x_{n} \in S$ such that $L-x_{n}<\frac{1}{n}$, i.e., there is a sequence $\left\{x_{n}\right\}$ in S that converges to L. If $\left\{x_{n}\right\}$ is eventually constant then that constant is L (since $L-c<\varepsilon$ for all $\varepsilon>0$ implies $c=L$) so $L \in S$. Otherwise, L is an accumulation point of S; but S is closed, so $L \in S$.

THE END

