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Mathematics 3A03 — Real Analysis I — Prof. David Earn

TERM TEST #2 — 30 November 2016

Duration: 50 minutes

Notes:

• No calculators, notes, scrap paper, or aids of any kind are permitted.

• This test consists of 6 pages and includes 8 questions. Bring any discrepancy to the
attention of your instructor or invigilator.

• All questions are to be answered on this test paper. Use the backs of pages if you need
more space. The final page is blank to provide extra space for the final question.

• The first 4 questions are multiple choice. Do not justify your answers to these questions.

• Always write clearly. An answer that cannot be deciphered cannot be marked.

• The marking scheme is indicated in the margin. The maximum total mark is 50.
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GOOD LUCK and ENJOY!

MARKS

[1] QUESTION 1. In order to obtain any credit for this question, both parts must be answered
in clear handwriting at the top of every page of this test.

(a) What is your name?

(b) What is your student number?

[3] QUESTION 2. (Circle each correct answer.) Suppose A ⊆ R, f : A→ R and a ∈ A. Then
f is continuous at a if and only if

(a) limx→a f(x) = f(a).

(b) either a is an isolated point of A or a is an accumulation point of A and
limx→a f(x) = f(a).

(c) limx→x0 f(x) = f(x0) for all x0 ∈ A.

(d) for any sequence {xn} in A, if xn → a then f(xn)→ f(a).

(e) for any ε > 0 there exists δ > 0 such that if x ∈ A and |x− a| < δ then
|f(x)− f(a)| < ε.

[3] QUESTION 3. (Circle each correct answer.) If f is continuous on [a, b] then

(a) f is uniformly continuous on [a, b];

(b) f is bounded on [a, b];

(c) there exists x0 ∈ [a, b] such that f(x0) = sup{f(x) : x ∈ [a, b]};
(d) f is differentiable on [a, b];

(e) f is integrable on [a, b].

[3] QUESTION 4. (Circle each correct answer.) A set E ⊆ R is compact if and only if

(a) E is bounded and contains all its accumulation points;

(b) every sequence of points chosen from E has a subsequence that converges;

(c) every open cover of E can be reduced to a finite subcover;

(d) R \ E is compact;

(e) R \ E is open and unbounded.
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[6] QUESTION 5. For each of the functions f in the table below, answer YES or NO in each
column to indicate whether or not f has the indicated property. Do not justify your answers.

Function f

(a)

f is differentiable

on (−1, 1)

(b)

f is integrable

on [−1, 1]

f (x) =

{
1 x = 0

0 x ∈ R, x 6= 0

f (x) =

{
1 x ∈ Q
0 x ∈ R \Q

f (x) =

{
0 x = 1

1
1−x x ∈ R, x 6= 1

[4] QUESTION 6. For each of the functions f in the table below, answer YES or NO in each
column to indicate whether or not f has the indicated property. Do not justify your answers.

Function f

(a)

f is a derivative

i.e., ∃g such that

f = g′

(b)

f is an integral

i.e., ∃g such that

f (x) =
∫ x

0 g(x) dx

f (x) = 0 ∀x ∈ R

f (x) =

{
1 x = 0

0 x ∈ R, x 6= 0
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[15] QUESTION 7.

(a) State the formal definition of “the function f : R→ R is differentiable at x”.

(b) Suppose f : R→ R is a function with the property that

|f(x)− f(y)| ≤ |x− y|2 , for all x, y ∈ R.

Prove that f is differentiable at every x ∈ R, and f ′(x) = 0 for all x ∈ R.

(c) For f as in part (b), prove that f must be a constant function.
Hint: Prove that f(x) = f(0) for all x ∈ R.
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[15] QUESTION 8. Consider the function f : R→ R defined by f(x) =

{(
x sin 1

x

)2
, x 6= 0,

0, x = 0.

(a) How do you know that f is integrable on [0, 1]?

(b) Is there a differentiable function g such that g′(x) = f(x) for all x ∈ [0, 1] ?
(Explain your answer.)

(c) Prove from the definition of the integral that 0 ≤
∫ 1

0

f ≤ 5

8
.

Hint: Choose an appropriate partition of [0, 1].
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