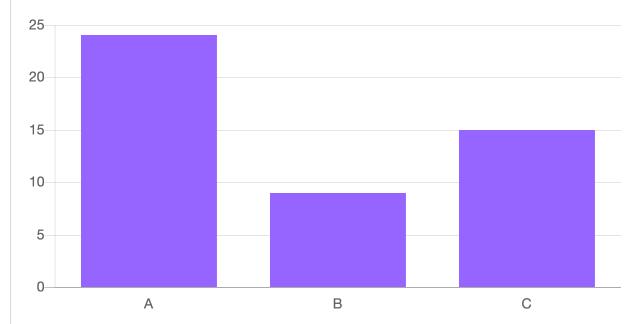
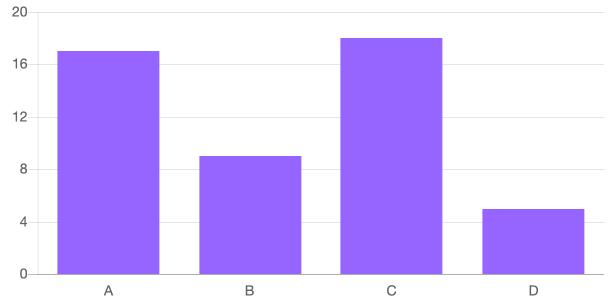
4/6/25, 4:00 PM Poll Results


Math 3A03 **Poll Results**

Metric spaces: Set differences of balls

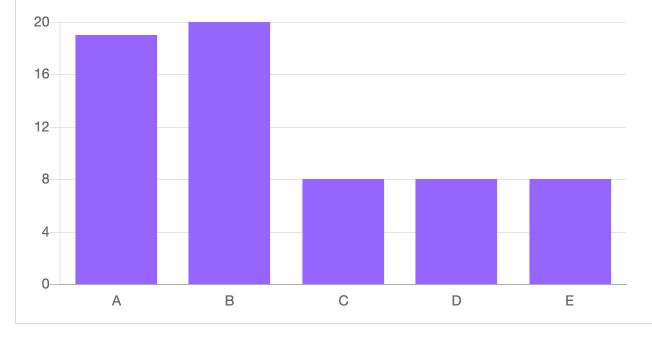
Question #1 Suppose $0 < r_1 < r_2$ and $B_{r_1}(x)$ and $B_{r_2}(x)$ are balls centered at x in the metric space $(\mathbb{R}, \mathbf{standard})$.

Which of the following are true?


- (A) $B_{r_2}(x) \setminus B_{r_1}(x)$ is open;
- (B) $B_{r_2}(x) \setminus B_{r_1}(x)$ is closed;
- (C) $B_{r_2}(x) \setminus B_{r_1}(x)$ is neither open nor closed.

Question #2 Now suppose $0 < r_1 < r_2$ and $B_{r_1}(x)$ and $B_{r_2}(x)$ are balls centered at x in the metric space $(\mathbb{R}^n, \mathbf{Euclidean})$ for $n \geq 2$.

Which of the following are true?


- (A) $B_{r_2}(x) \setminus B_{r_1}(x)$ is open;
- (B) $B_{r_2}(x) \setminus B_{r_1}(x)$ is closed;
- (C) $B_{r_2}(x) \setminus B_{r_1}(x)$ is neither open nor closed;
- (D) It depends on the dimension n.

Question #3 Now suppose $0 < r_1 < r_2$ and $B_{r_1}(x)$ and $B_{r_2}(x)$ are balls centered at x in the metric space $(\mathbb{R}^n, \mathbf{discrete})$.

Which of the following are true?

- (A) $B_{r_2}(x)\setminus B_{r_1}(x)$ is open;
- (B) $B_{r_2}(x)\setminus B_{r_1}(x)$ is closed;
- (C) $B_{r_2}(x) \setminus B_{r_1}(x)$ is neither open nor closed;
- (D) It depends on the dimension n;
- (E) It depends on the specific values of r_1 and r_2 .

