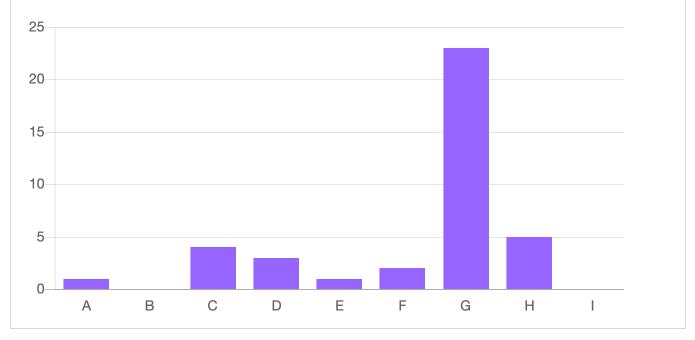
Poll Results

childsmath Math 3A03 Poll Results $\int_{M} d\omega = \int_{\partial M} \omega$

Derivatives: Chain Rule

Question #1 Can the chain rule be proved by exploiting the following equation?

$$rac{gig(f(x)ig) - gig(f(x_0)ig)}{x - x_0} \; = \; rac{gig(f(x)ig) - gig(f(x_0)ig)}{f(x) - f(x_0)} \cdot rac{f(x) - f(x_0)}{x - x_0} \; (\bigstar)$$


(A) No, (\spadesuit) is nonsense of $f\equiv 0$

(B) No, (\spadesuit) is nonsense if f is any constant function

(C) No, (\spadesuit) is nonsense if $f(x) = f(x_0)$ for any $x
eq x_0$

(D) No, (\spadesuit) is nonsense if $f(x) = f(x_0)$ for some $x
eq x_0$

- (E) No, (\spadesuit) is nonsense if $f(x) = f(x_0)$ for infinitely many $x
 eq x_0$
- (F) No, (\spadesuit) is nonsense if $f(x_n) = f(x_0)$ for a sequence $\{x_n\}$ that converges to x_0
- (G) Yes, we just need to take care of some special cases separately
- (H) No, we need a much more devious argument to prove the chain rule in general
- (I) No, the chain rule is actually false in general

