Poll Results

Background: Cauchy sequences

Question #1 A sequence $\{s_n\}$ is said to be a Cauchy sequence if and only if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $m \ge N$ and $n \ge N$ then $|s_n - s_m| < \varepsilon$. Which of the following statements are true if $\{s_n\}$ is a sequence in \mathbb{R} ?

- (A) If $\{s_n\}$ is a Cauchy sequence then it converges
- (B) If $\{s_n\}$ diverges then it is not a Cauchy sequence
- (C) If $\{s_n\}$ converges then it is a Cauchy sequence
- (D) If $\{s_n\}$ is not a Cauchy sequence then it diverges
- (E) $\{s_n\}$ converges if and only if it is a Cauchy sequence

