Poll Results

Assignment 5: Metric spaces

Question #1 Suppose $x = (x_1, ..., x_N) \in \mathbb{R}^N$ and $x_n = (x_{n,1}, ..., x_{n,N}) \in \mathbb{R}^N$ for each $n \in \mathbb{N}$. Which of the following statements are true for the sequence $(x_n)_{n \in \mathbb{N}}$ in the metric space $(\mathbb{R}^N, \text{Euclidean})$?

- (C) (x_n) never converges;
- (D) I have not had sufficient time to think about this yet.

Question #2 Let V be an inner product space, with norm $||v|| = \sqrt{\langle v, v \rangle}$, $v \in V$. Assume that the sequences $(v_n)_{n \in \mathbb{N}}$, $(w_n)_{n \in \mathbb{N}}$ are both convergent, $v_n \to v$ and $w_n \to w$. Which of the following statements are true?

- (A) $\langle v_n, w_n
 angle o \langle v, w
 angle,$ in (\mathbb{R} ,standard);
- (B) $\langle v_n, w_n
 angle o \|v\| + \|w\|,$ in (\mathbb{R} ,standard);
- (C) $\langle v_n, w_n
 angle$ does not necessarily converge in (\mathbb{R} ,standard);
- (D) I have not had sufficient time to think about this yet.

Question #4 By $C^n[a, b]$ we mean the space of *n*-times continuously differentiable functions on the closed interval [a, b], i.e., functions that have *n* derivatives and that the *n*th derivative is continuous on [a, b]. For n = 0, we mean C[a, b]. The derivative operator on $C^n[a, b]$ for n > 0 is defined by (D(f))(x) = f'(x). The sup norm $\|\cdot\|_{\infty}$ on C[a, b] is still a norm on $C^n[a, b]$ for n > 0 (why?). If n > 0, we can also define a "derivative norm",

$$\|f\|_D = \|f\|_\infty + \|f'\|_\infty.$$

Which of the following statements are true?

Poll Results

