Game values and (sur)real numbers
Jonathan Dushoff, McMaster University
dushoff@mcmaster.ca

1 Introduction

Game theory and theory of games

- Game theory is the theory of games with imperfect information
- Nash equilibria and so on
- Theory of games (or combinatorial game theory) is the theory of games with perfect information
- ... accidentally led to some of the most beautiful theories of analysis

Resources

- On Numbers and Games, Conway
- Surreal Numbers, Knuth
- Winning Ways, Berlekamp, Conway, Guy

Review

- We define the real numbers by:
- Building the integers as nested sets
- Building the rationals as equivalence classes of ordered pairs of integers
- Building the reals as cuts of the rationals
- With deterministic games, we build all this at once
- ... and much more!

2 Games

Hackenbush

- Draw a picture
- bLue lines can be removed by Left
- Red lines can be removed by Right
- greeN lines can be removed by aNyone
- On your turn, you remove one line
- Lines no longer connected to ground are removed

Domineering

- On your turn, you place a domino on some sort of grid
- Left places verticaL dominoes
- Right places hoRizontal dominoes

Defining games

- Intuition: if you're playing a game, you have a set of moves
- A move changes the game to a different game
- If you don't have a move you lose!
- A game is
- a set of options for the Left player, and a set of options for the Right player * $X=\left(X^{L} \mid X^{R}\right)$
- Options are previously defined games

Adding games

- Intuition: to play the sum of two games, you move in one of them when it's your turn
- $A+B=\left(A+b^{L}, a^{L}+B \mid A+b^{R}, a^{R}+B\right)$

Negatives

- The negative of a game reverses the roles of Left and Right
$-A=\left(A^{L} \mid A^{R}\right)$
$--A \equiv\left(-A^{R} \mid-A^{L}\right)$
- Again, relying on beautiful induction

3 Ordering games

- Intuition: adding game A to an existing game can't hurt Left unless Right has a good move
- IOW, unless Right can move in A to a game that doesn't hurt Right
- $A \geq 0$ unless
- Some option $a^{R} \leq 0$ Def: $-a^{R} \geq 0$
- This is a perfectly complete definition (induction again!) that tells you the outcome of any game

Game analysis

- $A \geq 0 A \leq 0 \Longrightarrow A=0$: second-player win
- $A \geq 0 A \not \leq 0 \Longrightarrow A>0$: Left wins
- $A \nsupseteq 0 A \leq 0 \Longrightarrow A<0$: Right wins
- $A \nsupseteq 0 A \not \leq 0 \Longrightarrow A \| B$: first-player win

Partial ordering

- Intuition: A is better (for Left) than B if $A+$ the negative of B is good for left
- $A \geq B \Longleftrightarrow A-B \geq 0$
- Def: $A-B=A+(-B)$

4 Values

- Two games have the same value if they have the same effect when added to any other game
- Which is the same as saying if they're equal under the partial ordering above
- Thus, a game value is an equivalence class of games
- Like you learned about with the rationals

5 Numbers

- The values I've defined are a very cool group.
- But not very numerical:

$$
-*+*=0
$$

What is a (surreal) number?

- Intuition: a game is number-like if you never want to move. There's a certain advantage for a given player, and they "spend" it by moving
- We build number-like games recursively.
- A number-game is: a set of options for the Left player, and a set of options for the Right player
$-x=\left(x^{L} \mid x^{R}\right)$, s.t. no $x^{L} \geq$ any x^{R}
- Options are previously defined number-games
- A number is a value associated with a class of number-games

Numbers

- We create the natural numbers as $n+1=(n \mid)$
- Negative integers are then defined by negation rule
- We can create any finite binary expansion

$$
\begin{aligned}
& -(2 k+1) / 2^{n+1}=\left(k / 2^{n} \mid(k+1) / 2^{n}\right) \\
& - \text { e.g., } 7 / 16=(3 / 8 \mid 1 / 2)
\end{aligned}
$$

The limit

- What happens if we take the limit of all numbers we can make in a finite number of steps?
- We can get all the reals ...

$$
\text { - e.g., } 1 / 3=(0,1 / 4,5 / 16, \ldots \mid 1,1 / 2,3 / 8, \ldots)
$$

- plus some very weird stuff

$$
\begin{aligned}
& -\omega=(0,1,2, \ldots \mid) \\
& -1 / \omega=(0 \mid 1,1 / 2,1 / 4, \ldots)
\end{aligned}
$$

0.999...

- Is $0.999 .$. really equal to 1 ?
- Depends on your definitions
- What is $0.1111 .$. (base 2) as a game?

Multiplication

- Intuition: no real game intuition
- Motivation: $\left(x-x^{S}\right)\left(y-y^{S}\right)$ has a known sign
- ... and construct division
- Insane simultaneous induction on simpler quotients, and on the main quotient
- The surreal numbers are a field

A wild and woolly set of infinities

- You can take as many limits as you want
- A collection of infinite numbers (the ordinals, plus you can add divide, multiply and root them)
- A similar collection of infinitely small numbers (infinitesimals)
- The real numbers are just a subfield

Surreal arithmetic

- $\omega-1$,
- $\omega / 2, \sqrt{(} \omega)$
- Even crazier stuff: $\sqrt[3]{\omega-1}-\pi / \omega$

6 Beyond numbers

Micro-infinitesimals

- If we allow values that aren't numbers, we have infinitesimals that are smaller than the smallest infinitesimal numbers

Temperature

- Cold games are games where moving makes the position worse for your side
- Number games are games that are (recursively) cold
- Red-blue hackenbush
- Neutral games are games where the positions are the same for left and Right
- The theory of Nim values
- Green hackenbush
- Hot games are games where there can be a positive value to moving
- Example: domineering

Conclusion

- We can define a bewildering array of games with a simple, recursive definition
- By defining addition, we can organize these into values, which form a group under sensible game addition
- By recursively requiring making a move to have a cost, we identify a subset that we call the surreal numbers
- these contain the reals, the infinite ordinals and a consistent set of infinitesimals
- These surreal numbers form a field
- There are also interesting game values that are not numbers
- Game values are the best thing

Beyond the conclusions

- The option framework is sort of a generalization of
- the Cantor framework for the ordinals
* (building up, never a right option)
- the Dedekind framework for the reals
* (filling in, always a right option)

Simplicity theorem (numbers)

- The value of $\left(x^{L} \mid x^{R}\right)$ is the simplest, non-prohibited value
- Prohibited: if if is larger than some x^{R} or less than some x^{L}
- Simplest: earliest created; it has no options that are not prohibited
- ... or else those would be simpler, non-prohibited values

More simplicity

- If no non-prohibited value already exists, then the value is
$-\left(x^{L}+x^{R}\right) / 2$, if both exist
$-x^{L}+1$, if only x^{L} exists
- ...

