

27 Integration II

28 Integration III

29 Integration IV

30 Integration V

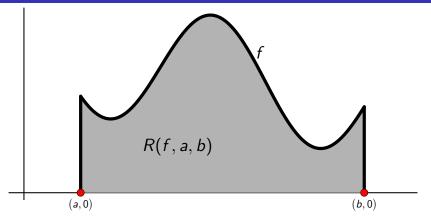
Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

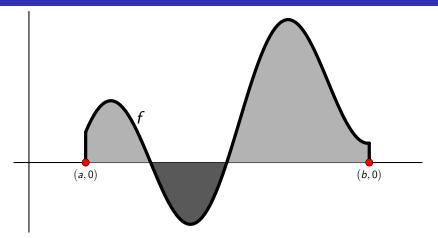
Lecture 26 Integration Friday 8 November 2019



- "Area of region R(f, a, b)" is actually a very subtle concept.
- We will only scratch the surface of it.
- Textbook presentation of integral is different (but equivalent).

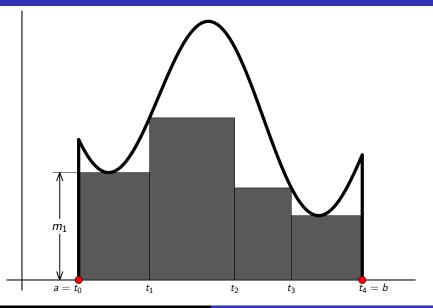
Our treatment is closer to that in M. Spivak "Calculus" (2008).

Integration

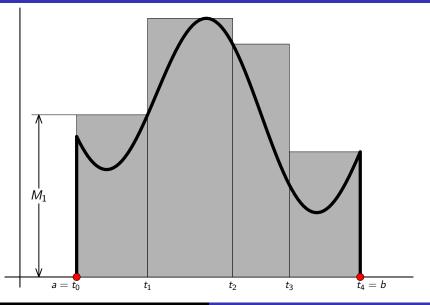


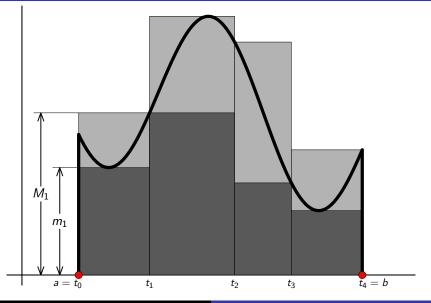
Contribution to "area of R(f, a, b)" is positive or negative depending on whether f is positive or negative.

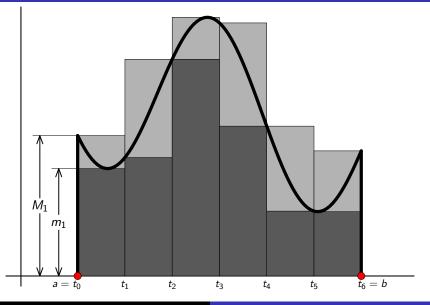
Lower sum



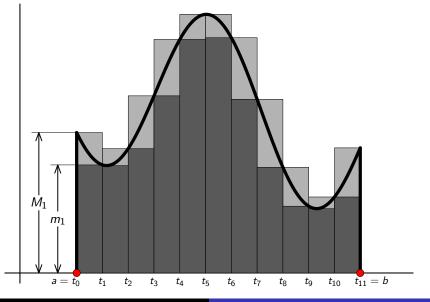
Upper sum



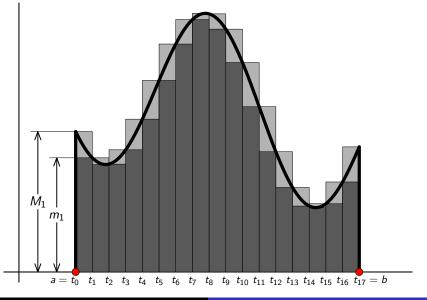


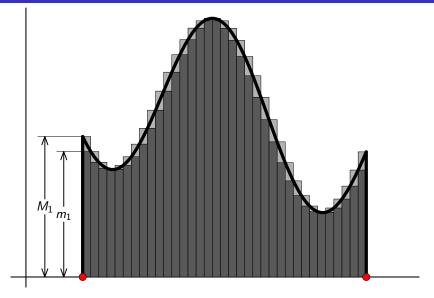


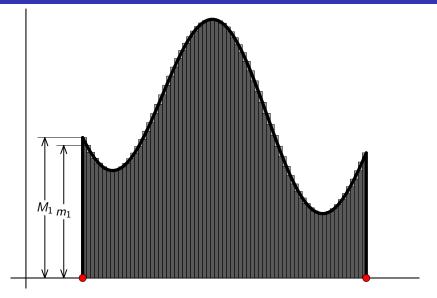
Instructor: David Earn Mathematics 3A03 Real Analysis I



Instructor: David Earn Mathematics 3A03 Real Analysis I







Definition (Partition)

Let a < b. A *partition* of the interval [a, b] is a finite collection of points in [a, b], one of which is a, and one of which is b.

We normally label the points in a partition

$$a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b$$
,

so the *i*th subinterval in the partition is

$$\left[t_{i-1},t_i\right].$$

Rigorous development of the integral

Definition (Lower and upper sums)

Suppose f is bounded on [a, b] and $P = \{t_0, \dots, t_n\}$ is a partition of [a, b]. Let $m_i = \inf \{ f(x) : x \in [t_{i-1}, t_i] \},$ $M_i = \sup \{ f(x) : x \in [t_{i-1}, t_i] \}.$

The lower sum of f for P, denoted by L(f, P), is defined as

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

The upper sum of f for P, denoted by U(f, P), is defined as

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- The lower and upper sums correspond to the total areas of rectangles lying below and above the graph of f in our motivating sketch.
- However, these sums have been defined precisely without any appeal to a concept of "area".
- The requirement that f be bounded on [a, b] is essential in order that all the m_i and M_i be well-defined.
- It is also <u>essential</u> that the m_i and M_i be defined as inf's and sup's (rather than maxima and minima) because f was <u>not</u> assumed continuous.

Relationship between motivating sketch and rigorous definition of lower and upper sums:

Since $m_i \leq M_i$ for each *i*, we have

$$m_i(t_i - t_{i-1}) \leq M_i(t_i - t_{i-1})$$
. $i = 1, ..., n$.

 \therefore For <u>any</u> partition *P* of [a, b] we have

 $L(f, P) \leq U(f, P),$

because

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}),$$

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 26: Lower and Upper Sums

Submit.

Relationship between motivating sketch and rigorous definition of lower and upper sums:

 More generally, if P₁ and P₂ are <u>any</u> two partitions of [a, b], it <u>ought</u> to be true that

$$L(f,P_1) \leq U(f,P_2),$$

because $L(f, P_1)$ should be \leq area of R(f, a, b), and $U(f, P_2)$ should be \geq area of R(f, a, b).

- But "ought to" and "should be" prove nothing, especially since we haven't yet even defined "area of R(f, a, b)".
- Before we can *define* "area of R(f, a, b)", we need to prove that $L(f, P_1) \leq U(f, P_2)$ for any partitions $P_1, P_2 \dots$

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 27 Integration II Tuesday 12 November 2019

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

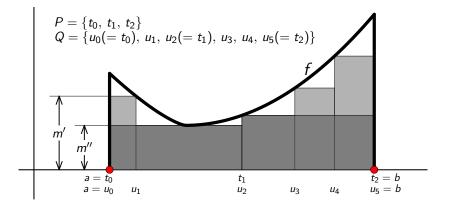
- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 27: Assignment 3 Awaremess

Submit.

- Assignment 4 was due before class today.
- Assignment 5 is due on
 Thursday 21 November 2019 @ 2:25pm via crowdmark.
- Math 3A03 Test #2 Tuesday 26 November 2019, 5:30–7:00pm, in JHE 264
- Assignment 6 will be due on Tuesday 3 December 2019 @ 2:25pm via crowdmark.
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

Lemm<u>a</u>

If partition $P \subseteq$ partition Q (i.e., if every point of P is also in Q), then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.



Proof of Lemma

As a first step, consider the special case in which the finer partition Q contains only one more point than P:

$$P = \{t_0, \ldots, t_n\},\ Q = \{t_0, \ldots, t_{k-1}, u, t_k, \ldots, t_n\},\$$

where

$$a = t_0 < t_1 < \cdots < t_{k-1} < u < t_k < \cdots < t_n = b$$

Let

$$m' = \inf \{ f(x) : x \in [t_{k-1}, u] \}, m'' = \inf \{ f(x) : x \in [u, t_k] \}.$$

... continued...

Proof of Lemma (cont.)

Then
$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}),$$

and
$$L(f,Q) = \sum_{i=1}^{k-1} m_i(t_i - t_{i-1}) + m'(u - t_{k-1}) + m''(t_k - u) + \sum_{i=k+1}^n m_i(t_i - t_{i-1})$$

 \therefore To prove $L(f, P) \leq L(f, Q)$, it is enough to show

$$m_k(t_k - t_{k-1}) \leq m'(u - t_{k-1}) + m''(t_k - u)$$
.

... continued...

Proof of Lemma (cont.)

Now note that since

$$\{f(x) : x \in [t_{k-1}, u]\} \subseteq \{f(x) : x \in [t_{k-1}, t_k]\},\$$

the RHS might contain some additional *smaller* numbers, so we must have

$$\begin{array}{rcl} m_k & = & \inf \left\{ \, f(x) \, : \, x \in [t_{k-1}, t_k] \, \right\} \\ & \leq & \inf \left\{ \, f(x) \, : \, x \in [t_{k-1}, u] \, \right\} & = & m' \, . \end{array}$$

Thus, $m_k \leq m'$, and, similarly, $m_k \leq m''$.

$$egin{array}{rcl} & \ddots & m_k(t_k-t_{k-1}) & = & m_k(t_k-u+u-t_{k-1}) \ & = & m_k(u-t_{k-1})+m_k(t_k-u) \ & \leq & m'(u-t_{k-1})+m''(t_k-u) \end{array}$$

... continued...

27/80

Rigorous development of the integral

Proof of Lemma (cont.)

which proves (in this special case where Q contains only one more point than P) that $L(f, P) \leq L(f, Q)$.

We can now prove the general case by adding one point at a time.

If Q contains ℓ more points than P, define a sequence of partitions

$$P = P_0 \subset P_1 \subset \cdots \subset P_\ell = Q$$

such that P_{j+1} contains exactly one more point that P_j . Then

$$L(f,P) = L(f,P_0) \leq L(f,P_1) \leq \cdots \leq L(f,P_\ell) = L(f,Q),$$

so $L(f, P) \leq L(f, Q)$.

(Proving $U(f, P) \ge U(f, Q)$ is similar: check!)

Theorem (Partition Theorem)

Let P_1 and P_2 be any two partitions of [a, b]. If f is bounded on [a, b] then $L(f, P_1) < U(f, P_2).$

Proof.

This is a straightforward consequence of the partition lemma.

Let $P = P_1 \cup P_2$, *i.e.*, the partition obtained by combining all the points of P_1 and P_2 .

Then

$$L(f, P_1) \leq L(f, P) \leq U(f, P) \leq U(f, P_2).$$

Important inferences that follow from the partition theorem:

- For <u>any</u> partition P', the upper sum U(f, P') is an upper bound for the set of <u>all</u> lower sums L(f, P).
 - $\therefore \quad \sup \left\{ L(f, P) : P \text{ a partition of } [a, b] \right\} \le U(f, P') \qquad \forall P'$
 - $\therefore \quad \sup \{L(f, P)\} \le \inf \{U(f, P)\}$
 - \therefore For <u>any</u> partition P',

 $L(f,P') \leq \sup \left\{ L(f,P) \right\} \leq \inf \left\{ U(f,P) \right\} \leq U(f,P')$

If sup {L(f, P)} = inf {U(f, P)} then we can define "area of R(f, a, b)" to be this number.

• Is it possible that $\sup \{L(f, P)\} < \inf \{U(f, P)\}$?

Example

- $\exists ? \ f : [a, b] \to \mathbb{R} \text{ such that } \sup \{L(f, P)\} < \inf \{U(f, P)\}$ Let $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [a, b], \\ 0 & x \in \mathbb{Q}^{c} \cap [a, b]. \end{cases}$ If $P = \{t_0, \dots, t_n\}$ then $m_i = 0$ (\because $[t_{i-1}, t_i] \cap \mathbb{Q}^{c} \neq \varnothing$), and $M_i = 1$ (\because $[t_{i-1}, t_i] \cap \mathbb{Q} \neq \varnothing$).
 - and $M_i = 1$ (: $[t_{i-1}, t_i] \cap \mathbb{Q} \neq \emptyset$).
- \therefore L(f, P) = 0 and U(f, P) = b a for any partition P.
- $\therefore \quad \sup \left\{ L(f, P) \right\} = 0 < b a = \inf \left\{ U(f, P) \right\}.$

Can we define "area of R(f, a, b)" for such a weird function? Yes, but not in this course!

Definition (Integrable)

A function $f : [a, b] \to \mathbb{R}$ is said to be *integrable* on [a, b] if it is <u>bounded</u> on [a, b] and

$$\sup\{L(f, P) : P \text{ a partition of } [a, b]\} \\= \inf\{U(f, P) : P \text{ a partition of } [a, b]\}$$

In this case, this common number is called the *integral* of f on [a, b] and is denoted $\int_{a}^{b} f$

Note: If
$$f$$
 is integrable then for any partition P we have

$$L(f,P) \leq \int_a^b f \leq U(f,P),$$

and $\int_{a}^{b} f$ is the <u>unique</u> number with this property.

32/80

Rigorous development of the integral

Notation:

$$\int_{a}^{b} f(x) \, dx \qquad \text{means precisely the same as}$$

$$\int_a^b f \, .$$

■ The symbol "dx" has no meaning in isolation just as "x →" has no meaning except in lim_{x→a} f(x).

It is not clear from the definition which functions are integrable.

- The definition of the integral does not itself indicate how to compute the integral of any given integrable function. So far, without a lot more effort we can't say much more than these two things:
 - **1** If $f(x) \equiv c$ then f is integrable on [a, b] and $\int_a^b f = c \cdot (b a)$.
 - **2** The weird example function is <u>not</u> integrable.

- A function that is integrable according to our definition is usually said to be *Riemann integrable*, to distinguish this definition from other definitions of integrability.
- In Math 4A03 you will define "Lebesgue integrable", a more subtle concept that makes it possible to attach meaning to "area of R(f, a, b)" for the weird example function (among others), and to precisely characterize functions that are Riemann integrable.

Theorem (Equivalent condition for integrability)

A <u>bounded</u> function $f : [a, b] \to \mathbb{R}$ is integrable on [a, b] iff for all $\varepsilon > 0$ there is a partition P of [a, b] such that

 $U(f,P)-L(f,P)<\varepsilon.$

Proof.

2016 Assignment 5.

<u>Note</u>: This theorem is just a restatement of the definition of integrability. It is often more convenient to work with $\varepsilon > 0$ than with sup's and inf's.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 28 Integration III Thursday 14 November 2019

- Definition: integrable.
- Example: non-integrable function.
- Theorem: Equivalent " ε -P" definition of integrable.

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 28: Integrable vs Continuous vs Differentiable

Integral theorems

Theorem

If f is continuous on [a, b] then f is integrable on [a, b].

Rough work to prepare for proof:

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i)(t_i - t_{i-1})$$

Given $\varepsilon > 0$, choose a partition P that is so fine that $M_i - m_i < \varepsilon$ for all i. Then

$$U(f,P) - L(f,P) < \varepsilon \sum_{i=1}^{n} (t_i - t_{i-1}) = \varepsilon(b-a).$$

Not quite what we want. So choose the partition P such that $M_i - m_i < \varepsilon/(b - a)$ for all i. To get that, choose P such that

$$|f(x)-f(y)| < rac{arepsilon}{2(b-a)}$$
 if $|x-y| < \max_{1 \leq i \leq n}(t_i-t_{i-1}),$

which we can do because f is <u>uniformly</u> continuous on [a, b].

Proof that continuous \implies integrable

Since f is continuous on the compact set [a, b], it is bounded on [a, b] (which is the first requirement to be integrable on [a, b]).

Also, since f is continuous on the compact set [a, b], it is <u>uniformly</u> continuous on [a, b]. $\therefore \forall \varepsilon > 0 \exists \delta > 0$ such that $\forall x, y \in [a, b]$,

$$|x-y| < \delta \implies |f(x)-f(y)| < \frac{\varepsilon}{2(b-a)}$$

Now choose a partition of [a, b] such that the length of each subinterval $[t_{i-1}, t_i]$ is less than δ , *i.e.*, $t_i - t_{i-1} < \delta$. Then, for any $x, y \in [t_{i-1}, t_i]$ we have $|x - y| < \delta$ and therefore

... continued...

Integral theorems

· · .

Proof that continuous \implies integrable (cont.)

$$egin{aligned} f(x)-f(y)| &< rac{arepsilon}{2(b-a)} & orall x, y \in [t_{i-1},t_i] \, . \ && M_i-m_i \leq rac{arepsilon}{2(b-a)} < rac{arepsilon}{b-a} & i=1,\ldots,n \end{aligned}$$

Since this is true for all *i*, it follows that

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i)(t_i - t_{i-1})$$

$$< \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (t_i - t_{i-1}) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

Theorem (Integral segmentation)

Let a < c < b. If f is integrable on [a, b], then f is integrable on [a, c] and on [c, b]. Conversely, if f is integrable on [a, c] and [c, b] then f is integrable on [a, b]. Finally, if f is integrable on [a, b] then

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f. \qquad (\heartsuit)$$

(a good exercise)

This theorem motivates these definitions:

$$\int_a^a f = 0$$
 and $\int_a^b f = -\int_b^a f$ if $a > b$.

Then (\heartsuit) holds for any $a, b, c \in \mathbb{R}$.

Theorem (Algebra of integrals – a.k.a. \int_a^b is a linear operator)

If f and g are integrable on [a, b] and $c \in \mathbb{R}$ then f + g and cf are integrable on [a, b] and

1
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g;$$

2 $\int_{a}^{b} cf = c \int_{a}^{b} f.$

(proofs are relatively easy; good exercises)

Theorem (Integral of a product)

If f and g are integrable on [a, b] then fg is integrable on [a, b].

(proof is much harder; tough exercise)

Lemma (Integral bounds)

Suppose f is integrable on [a, b]. If $m \le f(x) \le M$ for all $x \in [a, b]$ then $m(b-a) \le \int_{a}^{b} f \le M(b-a)$.

Proof.

· · .

For any partition *P*, we must have $m \leq m_i \ \forall i$ and $M \geq M_i \ \forall i$.

$$m(b-a) \leq L(f,P) \leq U(f,P) \leq M(b-a) \quad \forall P$$

$$\therefore \quad m(b-a) \leq \sup\{L(f,P)\} = \int_a^b f = \inf\{U(f,P)\} \leq M(b-a).$$

Theorem (Integrals are continuous)

If f is integrable on [a, b] and F is defined on [a, b] by

$$F(x) = \int_a^x f$$

then F is continuous on [a, b].

Proof

Let's first consider $x_0 \in [a, b)$ and show F is continuous from above at x_0 , *i.e.*, $\lim_{x \to x_0^+} F(x) = F(x_0)$. If $x \in (x_0, b]$ then

$$(\heartsuit) \implies F(x) - F(x_0) = \int_a^x f - \int_a^{x_0} f = \int_{x_0}^x f .$$
 (*)

... continued...

Proof (cont.)

Since f is integrable on [a, b], it is bounded on [a, b], so $\exists M > 0$ such that

$$-M \leq f(x) \leq M \qquad \forall x \in [a, b],$$

from which the integral bounds lemma implies

$$-M(x-x_0)\leq \int_{x_0}^x f\leq M(x-x_0)\,,$$

 $\therefore \quad (*) \implies -M(x-x_0) \leq F(x) - F(x_0) \leq M(x-x_0).$

:. For any $\varepsilon > 0$ we can ensure $|F(x) - F(x_0)| < \varepsilon$ by requiring $0 \le x - x_0 < \varepsilon/M$, which proves $\lim_{x \to x_0^+} F(x) = F(x_0)$.

A similar argument starting from $x_0 \in (a, b]$ and $x \in [a, x_0)$ yields $\lim_{x \to x_0^-} F(x) = F(x_0)$. Thus, "integrals are continuous".

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 29 Integration IV Friday 15 November 2019 5 minute Student Respiratory Illness Survey:

https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.

-Dr. Marek Smieja (Infectious Diseases)

- Assignment 5 is due on
 Thursday 21 November 2019 @ 2:25pm via crowdmark.
- Math 3A03 Test #2 Tuesday 26 November 2019, 5:30–7:00pm, in JHE 264
- Assignment 6 will be due on Tuesday 3 December 2019 @ 2:25pm via crowdmark.
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

Last time...

Rigorous development of integral:

- continuous \implies integrable.
- Integral segmentation.
- Algebra of integrals.
- Integral bounds lemma.
- Integrals are continuous.

Theorem (First Fundamental Theorem of Calculus)

Let f be integrable on [a, b], and define F on [a, b] by

$$F(x) = \int_a^x f$$

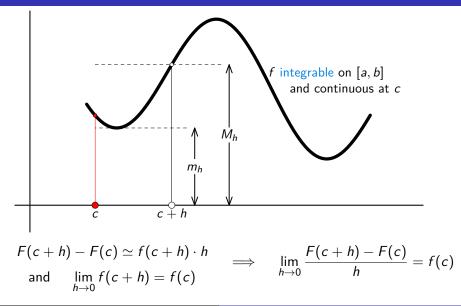
If f is continuous at $c \in [a, b]$, then F is differentiable at c, and

$$F'(c)=f(c)$$
.

<u>Note</u>: If c = a or b, then F'(c) is understood to mean the rightor left-hand derivative of F. Integration IV

51/80

Fundamental Theorem of Calculus



Proof of First Fundamental Theorem of Calculus

Suppose $c \in [a, b)$, and $0 < h \le b - c$. Then the integral segmentation theorem implies

$$F(c+h)-F(c)=\int_{c}^{c+h}f.$$

Motivated by the sketch, define

$$m_h = \inf \{ f(x) : x \in [c, c+h] \},\$$

 $M_h = \sup \{ f(x) : x \in [c, c+h] \}.$

Then the integral bounds lemma implies

$$m_h\cdot h\leq \int_c^{c+h}f\leq M_h\cdot h\,,$$

... continued...

Proof of First Fundamental Theorem of Calculus (cont.)

and hence

$$m_h \leq \frac{F(c+h)-F(c)}{h} \leq M_h$$

This inequality is true for <u>any</u> integrable function. However, because f is continuous at c, we have

$$\lim_{h\to 0^+} m_h = \lim_{h\to 0^+} M_h = f(c),$$

so the squeeze theorem implies

$$F'_+(c) = \lim_{h \to 0^+} \frac{F(c+h) - F(c)}{h} = f(c).$$

A similar argument for $c \in (a, b]$ and $c - a \le h < 0$ yields $F'_{-}(c) = f(c)$.

Corollary

If f is continuous on [a, b] and f = g' for some function g, then

$$\int_a^b f = g(b) - g(a) \, .$$

Proof.

Let
$$F(x) = \int_{a}^{x} f$$
. Then $\forall x \in [a, b]$, $F'(x) = f(x)$ (by FFTC).
 $\implies F' = f = g'$.

 $\therefore \exists c \in \mathbb{R} \text{ such that } F = g + c \quad (2016 \text{ Assignment 5}).$

 \therefore F(a) = g(a) + c. But $F(a) = \int_a^a f = 0$, so c = -g(a).

$$\therefore F(x) = g(x) - g(a).$$

This is true, in particular, for x = b, so $\int_{a}^{b} f = g(b) - g(a)$.

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 29: Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

If f is integrable on [a, b] and f = g' for some function g, then

$$\int_a^b f = g(b) - g(a) \, .$$

<u>Notes</u>:

- This looks like the corollary to the first fundamental theorem, except that f is only assumed integrable, <u>not</u> continuous.
- Recall from Darboux's theorem that if f = g' for some g then f has the intermediate value property, but f need not be continuous.
- g' exists on $[a, b] \implies$ Mean Value Theorem applies to g.
- The proof of the second fundamental theorem is completely different from the corollary to the first, because we cannot use the first fundamental theorem (which assumed *f* is continuous).

Proof of Second Fundamental Theorem of Calculus

Let $P = \{t_0, \ldots, t_n\}$ be any partition of [a, b]. By the Mean Value Theorem, for each $i = 1, \ldots, n$, $\exists x_i \in [t_{i-1}, t_i]$ such that

$$g(t_i) - g(t_{i-1}) = g'(\mathbf{x}_i)(t_i - t_{i-1}) = f(\mathbf{x}_i)(t_i - t_{i-1}).$$

Define m_i and M_i as usual. Then $m_i \leq f(\mathbf{x}_i) \leq M_i \ \forall i$, so

$$\begin{split} m_i(t_i - t_{i-1}) &\leq f(\mathbf{x}_i)(t_i - t_{i-1}) \leq M_i(t_i - t_{i-1}), \\ i.e., \quad m_i(t_i - t_{i-1}) \leq g(t_i) - g(t_{i-1}) \leq M_i(t_i - t_{i-1}). \\ &\therefore \sum_{i=1}^n m_i(t_i - t_{i-1}) \leq \sum_{i=1}^n \left(g(t_i) - g(t_{i-1})\right) \leq \sum_{i=1}^n M_i(t_i - t_{i-1}) \\ i.e., \quad L(f, P) \leq g(b) - g(a) \leq U(f, P) \end{split}$$

for any partition P. $\therefore g(b) - g(a) = \int_a^b f$.

What useful things can we do with integrals?

- Compute areas of complicated shapes: find anti-derivatives and use the second fundamental theorem of calculus.
- Define trigonometric functions (rigorously).
- Define logarithm and exponential functions (rigorously).

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 35 Integration V Friday 29 November 2019 Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 35: Final Exam time and place

Submit.

5 minute Student Respiratory Illness Survey:

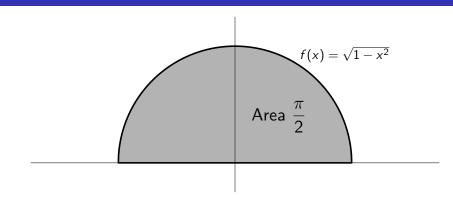
https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.

-Dr. Marek Smieja (Infectious Diseases)

You can monitor what percentage of students has completed the course evaluation at https://evals.mcmaster.ca/stats/index.php?fac=SCIENCE.

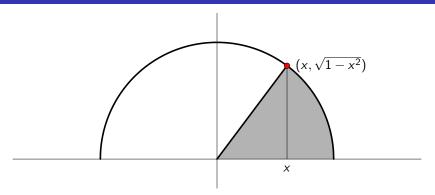
What is π ?



Definition

$$\pi \equiv 2 \int_{-1}^{1} \sqrt{1-x^2} \, dx \, .$$

What are cos and sin ?

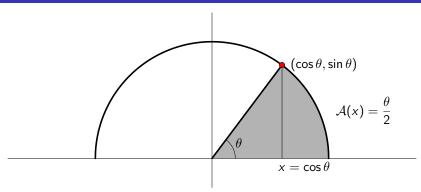


Definition (Sectoral area)

If
$$x \in [-1, 1]$$
 then $\mathcal{A}(x) = \frac{x\sqrt{1-x^2}}{2} + \int_x^1 \sqrt{1-t^2} dt$.

<u>Note</u>: $A(-1) = \pi/2$, A(1) = 0.

What are cos and sin ?



Length of circular arc swept out by angle θ : θ

Area of sectoral region swept out by angle θ : $\theta/2$

So, if $\theta \in [0, \pi]$ then we define $\cos \theta$ to be the unique number in [-1, 1] such that $\mathcal{A}(\cos \theta) = \theta/2$, and we define $\sin \theta$ to be $\sqrt{1 - (\cos \theta)^2}$.

<u>We must prove</u>: given $x \in [0, \pi] \exists ! y \in [-1, 1]$ such that $\mathcal{A}(y) = x/2$.

What are cos and sin ?

Proof that $\forall x \in [0, \pi] \exists ! y \in [-1, 1]$ such that $\mathcal{A}(y) = x/2$:

<u>Existence</u>: $\mathcal{A}(1) = 0$, $\mathcal{A}(-1) = \pi/2$, and \mathcal{A} is continuous. Hence by the intermediate value theorem $\exists y \in [-1, 1]$ such that $\mathcal{A}(y) = x/2$.

<u>Uniqueness</u>: A is differentiable on (-1, 1) and A'(x) < 0 on (-1, 1). \therefore On (-1, 1), A is decreasing, and hence one-to-one.

Definition (cos and sin)

If $x \in [0, \pi]$ then $\cos x$ is the unique number in [-1, 1] such that $\mathcal{A}(\cos x) = x/2$, and $\sin x = \sqrt{1 - (\cos x)^2}$.

These definitions are easily extended to all of \mathbb{R} :

- For $x \in [\pi, 2\pi]$, define $\cos x = \cos (2\pi x)$ and $\sin x = -\sin (2\pi x)$.
- Then, for $x \in \mathbb{R} \setminus [0, 2\pi]$ define $\cos x = \cos (x \mod 2\pi)$ and $\sin x = \sin (x \mod 2\pi)$.

Trigonometric theorems

Given the rigorous definition of cos and sin, we can prove:

- 1 cos and sin are differentiable on \mathbb{R} . Moreover, $\cos' = -\sin$ and $\sin' = \cos$.
- 2 sec, tan, csc and cot can all be defined in the usual way and have all the usual properties.
- 3 The inverse function theorem allows us to define and compute the derivatives of all the inverse trigonometric functions.
- 4 If f is twice differentiable on \mathbb{R} , f'' + f = 0, f(0) = aand f'(0) = b, then $f = a\cos + b\sin$.
- 5 For all $x, y \in \mathbb{R}$,

$$sin (x + y) = sin x cos y + cos x sin y,$$

$$cos (x + y) = cos x cos y - sin x sin y.$$

Something deep that you know enough to prove

Extra Challenge Problem: Prove that π is irrational.

Consider the function

$$f(x)=10^x.$$

What <u>exactly</u> is this function?

In our mathematically naïve previous life, we just <u>assumed</u> that f(x) is well-defined $\forall x \in \mathbb{R}$, and that f has a well-defined inverse function,

$$f^{-1}(x) = \log_{10}(x)$$
.

But how are 10^{\times} and $\log_{10}(x)$ defined for <u>irrational</u> x ?

Let's review what we know...

70/80

What are log and exp ?

$$n \in \mathbb{N} \implies 10^n = \underbrace{10\cdots 10}_{n \text{ times}}$$

 $n,m\in\mathbb{N}$ \implies $10^n\cdot10^m=10^{n+m}$

When we extend 10^x to $x \in \mathbb{Q}$, we want this product rule to be preserved:

$$10^{0} \cdot 10^{n} = 10^{0+n} = 10^{n} \implies 10^{0} = 1$$

$$10^{-n} \cdot 10^n = 10^0 = 1 \implies 10^{-n} = \frac{1}{10^n}$$

$$\underbrace{10^{1/n} \cdots 10^{1/n}}_{n \text{ times}} = 10 \underbrace{\frac{1}{n \cdots 1/n}}_{n \text{ times}} = 10^1 = 10 \implies 10^{1/n} = \sqrt[n]{10}$$

Finally, to define 10^q for all $q \in \mathbb{Q}$, note that we must have

$$\left(10^{\frac{1}{n}}\right)^{m} = \underbrace{10^{\frac{1}{n}} \cdots 10^{\frac{1}{n}}}_{m \text{ times}} = 10\underbrace{\frac{1}{n}^{\frac{1}{n} \cdots + \frac{1}{n}}}_{m \text{ times}} = 10^{\frac{m}{n}} \implies 10^{\frac{m}{n}} \stackrel{\text{def}}{=} \left(\sqrt[n]{10}\right)^{m}$$

Now we're stuck. *How do we extend this scheme to <u>irrational</u> ×?* We need a more sophisticated idea.

Let's try to find a function on all of $\mathbb R$ that satisfies

$$f(x+y) = f(x) \cdot f(y), \qquad orall x, y \in \mathbb{R},$$
 and $f(1) = 10.$

It then follows that f(0) = 1 and, $\forall x \in \mathbb{Q}$, $f(x) = [f(1)]^x$. What additional properties can we impose on f(x) that will lead us to a sensible definition of f(x) for <u>all</u> $x \in \mathbb{R}$?

One approach is to insist that f is <u>differentiable</u>.

Then we can compute

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) \cdot f(h) - f(x)}{h}$$

= $f(x) \cdot \lim_{h \to 0} \frac{f(h) - 1}{h} = f(x) \cdot f'(0) \equiv \alpha f(x)$

So $f'(x) = \alpha f(x)$, *i.e.*, we have f' in terms of unknowns f and α . So what?!?

Let's look at the inverse function, f^{-1} (think "log₁₀"):

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\alpha f(f^{-1}(x))} = \frac{1}{\alpha x}$$

Holy #@%! We have a simple <u>formula</u> for the derivative of $f^{-1}!$

Since we want $\log_{10} 1 = 0$, we should <u>define</u> $\log_{10} x$ as $(1/\alpha) \int_1^x t^{-1} dt$. Great idea, but we don't know what α is.

So, let's ignore α . . .

(and hope that what we end up with is log to some "natural" base).

Definition (Logarithm function)

If
$$x > 0$$
 then $\log x = \int_1^x \frac{1}{t} dt$.

This function is strictly increasing $(\log'(x) > 0 \text{ for all } x > 0)$ so we can now define:

Definition (Exponential function)

$$\exp = \log^{-1}$$
 .

With these rigorous definitons of log and exp, we can prove the following as theorems:

1 If
$$x, y > 0$$
 then $\log (xy) = \log x + \log y$.
2 If $x, y > 0$ then $\log (x/y) = \log x - \log y$.
3 If $n \in \mathbb{N}$ and $x > 0$ then $\log (x^n) = n \log x$.
4 For all $x \in \mathbb{R}$, $\exp'(x) = \exp(x)$.
5 For all $x, y \in \mathbb{R}$, $\exp(x + y) = \exp(x) \cdot \exp(y)$.
6 For all $x \in \mathbb{Q}$, $\exp(x) = [\exp(1)]^x$.

The last theorem above motivates:

Definition

$$egin{aligned} e &= & \exp(1)\,, \ e^x &= & \exp(x) & ext{ for all } x \in \mathbb{R}. \end{aligned}$$

We can now give a rigorous definition of 10^x for any $x \in \mathbb{R}$. In fact, we can do this for any a > 0.

Definition (a^{\times})

If a > 0 and x is <u>any real number</u> then

$$a^{x} = e^{x \log a}$$

We then have the following <u>theorems</u> for any a > 0:

1
$$(a^{x})^{y} = a^{xy}$$
 for all $x, y \in \mathbb{R}$;
2 $a^{0} = 1$; $a^{1} = a$;
3 $a^{x+y} = a^{x} \cdot a^{y}$ for all $x, y \in \mathbb{R}$;
4 $a^{-x} = 1/a^{x}$ for all $x \in \mathbb{R}$;
5 if $a > 1$ then a^{x} is increasing on \mathbb{R} ;
6 if $0 < a < 1$ then a^{x} is decreasing on \mathbb{R} .

Using the integral to define useful functions rigorously

■ Just as we defined 10^x via the definition of log $x = \int_1^x \frac{1}{t} dt$, we could have defined the trigonometric functions starting from

$$rcsin x = \int_0^x rac{1}{\sqrt{1-t^2}} \, dt \,, \qquad -1 < x < 1,$$

rather than the more complicated definition of cos via $\mathcal{A}(x)$. Many common functions are defined as integrals of rational functions of square roots.

- Any compositions of trig functions, log, exp, rational functions and radicals, are called *elementary functions*.
- Most functions that turn up a lot in applications can be defined rigorously via integrals of elementary functions. Such functions are collectively called *special functions*.