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Announcements

Poll results on the web site are up-to-date as of this morning
before class.

Solutions to Assignment 5 have been updated. There is now a
full proof of the Jordan-von Neumann theorem, which we will
discuss today.

We’ll also discuss the final exam today.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Which norms are induced
by inner products?

Pascual Jordan and John von Neumann (1935, “On
Inner Products in Linear, Metric Spaces”, Annals of
Mathematics 36(3), 719–723).

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.jstor.org/stable/1968653
https://www.jstor.org/stable/1968653
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Norms induced by inner products

Theorem (Jordan and von Neumann (1935))

A norm ∥·∥ on a real vector space V is induced by an inner
product if and only if it satisfies the parallelogram law,

∥x + y∥2 + ∥x − y∥2 = 2 ∥x∥2 + 2 ∥y∥2 , ∀x , y ∈ V . (PL)

Note: Jordan & von Neumann proved this for vector spaces over R or C.

Corollary
The Euclidean norm is the only p-norm on Rn, ℓ∞, or C [a, b] that
is induced by an inner product.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

( =⇒ )

Given an inner product ⟨·, ·⟩ on a vector space V , and the induced norm
∥·∥, for any x , y ∈ V we have

∥x + y∥2 + ∥x − y∥2 = ⟨x + y , x + y⟩ + ⟨x − y , x − y⟩

=
(

⟨x , x⟩ + ⟨x , y⟩ + ⟨y , x⟩ + ⟨y , y⟩
)

+
(

⟨x , x⟩ − ⟨x , y⟩ − ⟨y , x⟩ + ⟨y , y⟩
)

= 2 ⟨x , x⟩ + 2 ⟨y , y⟩

= 2 ∥x∥2 + 2 ∥y∥2
,

as required.

That was the easy part. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

( ⇐= )

First, note that (changing a sign in the calculation on the previous slide) given
an inner product ⟨·, ·⟩, and the induced norm ∥·∥, for any x , y ∈ V , we have

∥x + y∥2 − ∥x − y∥2 = ⟨x + y , x + y⟩ − ⟨x − y , x − y⟩

=
(

⟨x , x⟩ + ⟨x , y⟩ + ⟨y , x⟩ + ⟨y , y⟩
)

−
(

⟨x , x⟩ − ⟨x , y⟩ − ⟨y , x⟩ + ⟨y , y⟩
)

= 2 ⟨x , y⟩ + 2 ⟨y , x⟩

= 4 ⟨x , y⟩ .

Solving for ⟨x , y⟩, we see that if a norm is induced by an inner product, then
the inner product can be expressed using the norm via

⟨x , y⟩ = 1
4

(
∥x + y∥2 − ∥x − y∥2) (♡)

. . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Thus, if there is an inner product ⟨·, ·⟩ that induces a given norm ∥·∥, then the
inner product must be given by (♡).

We now need to show that, given any norm, if we define ⟨·, ·⟩ via (♡) then ⟨·, ·⟩
is actually an inner product if and only if the norm satisfies the parallelogram
law (PL). To that end, we examine each of the axioms of an inner product,
assuming ⟨·, ·⟩ is defined from a given norm ∥·∥ via (♡). This is not an easy
problem. If you solved it, you should be proud!

So, suppose ∥·∥ is a norm on V that satisfies the parallelogram law (PL), and
that ⟨·, ·⟩ is a candidate inner product defined by (♡).

Symmetry.
Swapping x and y , in the definition (♡) yields

⟨y , x⟩ = 1
4

(
∥y + x∥2 − ∥y − x∥2) = ⟨x , y⟩. (1)

Thus, the inner product is symmetric.
. . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Positive Definiteness
By definition,

⟨x , x⟩ = 1
4

(
∥x + x∥2 − ∥x − x∥2) = 1

4
(
∥2x∥2 − 0

)
= 1

4
(
4∥x∥2) = ∥x∥2.

Since norms are always nonnegative and zero if and only if x = 0, we conclude
⟨x , x⟩ = 0 if and only if x = 0.

Thus, ⟨x , x⟩ is positive definite.

Linearity in the First Argument
This is the very challenging part. We will break it into two pieces:
⟨x + y , z⟩ = ⟨x , z⟩ + ⟨y , z⟩ and ⟨ax , z⟩ = a ⟨x , z⟩. Both are tricky,
but—perhaps suprisingly—the second requires more analytical creativity.

To begin with, it is worth making a note of what the paralleogram law (PL)
implies if one of the two vectors is the zero vector. If x = 0, then (PL) states
that ∥y∥2 + ∥−y∥2 = 2 ∥y∥2, and hence1

∥−y∥2 = ∥y∥2 ∀y ∈ V . (2)
. . . continued . . .

1Note that any norm on V satisfies ∥ay∥ = |a| ∥y∥ for all a ∈ R by
definition, so ∥−y∥ = ∥y∥, and hence ∥−y∥2 = ∥y∥2, regardless of whether the
parallelogram law (PL) holds in V . But it is interesting that ∥−y∥2 = ∥y∥2

follows directly from the parallelogram law, which does not itself imply ∥·∥ is a
norm. For example, if we define a function ∥·∥ on Rn via ∥x∥ = x1 (the first
component of x) then ∥·∥ satisfies the parallelogram law (PL) but is not a
norm, since ∥−x∥ = −x1 < 0 for x1 > 0, and hence fails to be non-negative.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Consequently, if we insert x = 0 in (♡), then we we find
⟨0, y⟩ = 0 ∀y ∈ V . (3)

This may seem an obvious fact, but remember that we do not yet know that
⟨·, ·⟩ is an inner product. All we know is that it is a function of two variables
defined by (♡) and that the norm satisfies (PL).
Now, the parallelogram law (PL) is presumed to hold for all x , y ∈ V . So, it is
true if we write x and y as any linear combinations of other vectors in V .
Doing this judiciously will get us where we want to go. Given any u, v , w ∈ V ,
if we let x = u + v and y = w then (PL) states that

∥u + v + w∥2 + ∥u + v − w∥2 = 2 ∥u + v∥2 + 2 ∥w∥2 . (4)
Similarly, if we let x = u − v and y = w then (PL) states that

∥u − v + w∥2 + ∥u − v − w∥2 = 2 ∥u − v∥2 + 2 ∥w∥2 . (5)
If we now subtract Eq. (5) from Eq. (4) we obtain

∥u + v + w∥2 + ∥u + v − w∥2 − ∥u − v + w∥2 − ∥u − v − w∥2

= 2 ∥u + v∥2 − 2 ∥u − v∥2 .
(6)

. . . continued . . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Recalling the definition of the candidate inner product (♡), the RHS of Eq. (6)
is

2 ∥u + v∥2 − 2 ∥u − v∥2 = 8 ⟨u, v⟩ ,

and the LHS of Eq. (6) is
∥(u + v) + w∥2 + ∥(u + v) − w∥2 − ∥(u − v) + w∥2 − ∥(u − v) − w∥2

= ∥(u + w) + v∥2 + ∥(u − w) + v∥2 − ∥(u + w) − v∥2 − ∥(u − w) − v∥2

= ∥(u + w) + v∥2 − ∥(u + w) − v∥2 + ∥(u − w) + v∥2 − ∥(u − w) − v∥2

= 4 ⟨u + w , v⟩ + 4 ⟨u − w , v⟩ .

Therefore, Eq. (6) can be written
⟨u + w , v⟩ + ⟨u − w , v⟩ = 2 ⟨u, v⟩ . (7)

It would help us if we could replace 2 ⟨u, v⟩ with ⟨2u, v⟩ in this equation, but we
don’t (yet) know that scalar multiples can be brought inside the first argument
of ⟨·, ·⟩. Nevertheless, we can see that this is true if the scalar multiple happens
to be 2, by considering the special case of Eq. (7) with u = w , which yields

. . . continued . . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

⟨2u, v⟩ + ⟨0, v⟩ = 2 ⟨u, v⟩ , (8)
and, recalling Eq. (3), this becomes

⟨2u, v⟩ = 2 ⟨u, v⟩ . (9)
Thus, in Eq. (7), we can indeed replace 2 ⟨u, v⟩ with ⟨2u, v⟩ to obtain

⟨u + w , v⟩ + ⟨u − w , v⟩ = ⟨2u, v⟩ . (10)
This is true for any u, v , w ∈ V , so, given any x , y , z ∈ V (unrelated to any
particular x , y , z we started with), if we insert

u = 1
2(x + y), v = z, w = 1

2(x − y), (11)

in Eq. (10) we obtain
⟨x , z⟩ + ⟨y , z⟩ = ⟨x + y , z⟩ , ∀x , y , z ∈ V , (12)

as required.
. . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Now the really tricky part: we need to prove that for any x , y ∈ V and any
a ∈ R, ⟨ax , y⟩ = a ⟨x , y⟩. Our first step is to observe that Eq. (9) is, in fact, a
special case of what we are now aiming to prove, namely the case a = 2. Using
Eq. (9) and Eq (12), it follows that

⟨3u, v⟩ = ⟨2u + u, v⟩ = ⟨2u, v⟩ + ⟨u, v⟩ = 2 ⟨u, v⟩ + ⟨u, v⟩ = 3 ⟨u, v⟩ .

Similarly, (formally by induction) we have
⟨nu, v⟩ = n ⟨u, v⟩ ∀n ∈ N. (13)

Now consider a rational number m
n , with m, n ∈ N. We have〈 m

n u, v
〉

= m
〈 1

n u, v
〉

(14a)

=⇒ n
〈 m

n u, v
〉

= nm
〈 1

n u, v
〉

= m ⟨u, v⟩ (14b)

=⇒
〈 m

n u, v
〉

= m
n ⟨u, v⟩ , (14c)

so ⟨au, v⟩ = a ⟨u, v⟩ for any positive rational number.
. . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

If we now observe, using Eqs. (3) and (12), that
0 = ⟨0, v⟩ = ⟨u + (−u), v⟩ = ⟨u, v⟩ + ⟨−u, v⟩ , (15)

then we have
⟨−u, v⟩ = − ⟨u, v⟩ ∀u, v ∈ V , (16)

which then implies that, in fact, ⟨au, v⟩ = a ⟨u, v⟩ for all a ∈ Q.

Another way of saying this is that, for any u, v ∈ V , the function
f (a) = ⟨au, v⟩ − a ⟨u, v⟩ (17)

satisfies f (a) = 0 for all a ∈ Q. If we can now show that f is a continuous
function of a for all a ∈ R, then it will follow that f (a) = 0 for all a ∈ R.
To that end, first recall that in any normed vector space V ,

|∥x∥ − ∥y∥| ≤ ∥x − y∥ ∀ x , y ∈ V (18)
(which you can prove by noting that ∥x∥ = ∥(x − y) + y∥ and using the
triangle inequality). Consequently, if ⟨·, ·⟩ is defined by (♡) then

. . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

|⟨x , y⟩| = 1
4

∣∣∣ ∥x + y∥2 − ∥x − y∥2
∣∣∣

= 1
4

∣∣∣( ∥x + y∥ − ∥x − y∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣

= 1
4

∣∣∣( ∥x + y∥ − ∥−(x − y)∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣ from (2)

≤ 1
4

∣∣∣( ∥(x + y) + (x − y)∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣ from (18)

= 1
4

∣∣∣( ∥2x∥
)(

∥x + y∥ + ∥x − y∥
)∣∣∣

≤ 1
4

∣∣∣( ∥2x∥
)(

∥x∥ + ∥y∥ + ∥x∥ + ∥y∥
)∣∣∣ triangle

inequality

= 1
4

∣∣∣(2 ∥x∥
)(

2 ∥x∥ + 2 ∥y∥
)∣∣∣

Cancelling constants, we have
|⟨x , y⟩| ≤ ∥x∥

(
∥x∥ + ∥y∥

)
. (19)

. . . continued . . .Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Now suppose an ∈ Q for all n ∈ N, and an
n → ∞−−−−→ a ∈ R. We need to show

that f (an) n → ∞−−−−→ f (a) to establish that f is continuous on R. Therefore,
consider
|f (an) − f (a)| =

∣∣⟨anu, v⟩ − an ⟨u, v⟩ −
(

⟨au, v⟩ − a ⟨u, v⟩
)∣∣

=
∣∣⟨anu, v⟩ − ⟨au, v⟩ −

(
an ⟨u, v⟩ − a ⟨u, v⟩

)∣∣
= |⟨anu, v⟩ − ⟨au, v⟩ − (an − a) ⟨u, v⟩|
= |⟨anu, v⟩ + ⟨−au, v⟩ − (an − a) ⟨u, v⟩| from (16)
= |⟨anu − au, v⟩ − (an − a) ⟨u, v⟩| from (12)
= |⟨(an − a)u, v⟩ − (an − a) ⟨u, v⟩|
≤ |⟨(an − a)u, v⟩| + |(an − a) ⟨u, v⟩|
= |⟨(an − a)u, v⟩| + |an − a| |⟨u, v⟩|
≤ ∥(an − a)u∥ (∥(an − a)u∥ + ∥v∥) + |an − a| |⟨u, v⟩| from (19)

= |an − a|
(

∥u∥
(

|an − a| ∥u∥ + ∥v∥ + |⟨u, v⟩|
))

n → ∞−−−−→ 0. . . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms induced by inner products

Proof that ∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL).

Thus, f (an) n → ∞−−−→ f (a).
Since a ∈ R was arbitrary, f is continuous on R.
Therefore, f (a) = 0 for all a ∈ R, and hence, by definition (17),
⟨au, v⟩ = a ⟨u, v⟩ for all a ∈ R, as required.
Thus, it is indeed true that

∥x∥ =
√

⟨x , x⟩ ⇐⇒ ∥·∥ satisfies (PL)

i.e.,
A norm ∥·∥ is induced by an inner product ⟨·, ·⟩
if and only if ∥·∥ satisfies the parallelogram law (PL).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Scan to get started on your course surveys.

https://mcmaster.bluera.com/mcmaster

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The Final Exam

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Final exam: What you need to know

Everything discussed in class, including all
definitions/concepts and theorems/lemmas/corollaries. It is
essential that you understand how to use the definitions and
theorems to construct proofs.
Everything in assignments and the test. Solutions are posted
on the course web site. Make sure you fully understand all the
solutions to all the problems in all the assignments and tests.
The TA’s tutorial notes are also posted on the course web site.
Most—but not all—of the material that you are responsible
for is covered in chapters 7–9 and 11 in the BS textbook,
and/or chapters 7–10 and 13 in the TBB textbook. You are
not responsible for material in the textbook that was not
covered in lectures or assignments, but there are many
problems in these chapters that we did not discuss and would
provide excellent practice for the exam.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Final exam: other information
My office hours will be different during the exam period.

Thursday 10 April 2025 @ 1:30–2:30 pm
Thursday 17 April 2025 @ 1:30–2:30 pm
Wednesday 23 April 2025 @ 10:00 am to 12:00 pm and
2:00–4:00 pm (possibly online; to be confirmed: check course
web site)

The above dates and times are tentative. Check the course
web site for announcements about any changes in office hours
during the exam period.
Check Final exam page on course web site for any further info.
Some additional problems will be posted in the coming days.
It is possible that one or more of those problems—or a very
similar problem—might appear on the final exam.
I will post a blank exam at the end of this week or early next
week, so you can see the structure of the exam (similar in style
to the test structure document I shared before the midterm).

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/final/final.md
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Other courses you might enjoy if you liked Math 3A03

Math 4A03 Real Analysis II
Lebesgue theory of measure and integration, and other topics

Math 4AT3* Topics in Analysis
Math 4L03* Introduction to Mathematical Logic
Math 3F03 Ordinary Differential Equations

Qualitative theory of ODEs / dynamical systems
equilibria, stability, attractors
prerequisite: Math 2C03

Math 4MB3 Mathematical Biology
analysis and ODE theory applied to epidemic modelling
prerequisite: Math 3F03 (or permission of instructor)

Math 3DC3* Discrete Dynamical Systems and Chaos
Stats 3PG3 Probability and Games of Chance

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=265001
https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=265002
https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=265009
https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=264985
https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=265011
https://davidearn.mcmaster.ca
https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=264983
https://academiccalendars.romcmaster.ca/preview_course_nopop.php?catoid=53&coid=266613
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Thank you!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Scan to get started on your course surveys.

https://mcmaster.bluera.com/mcmaster

Instructor: David Earn Mathematics 3A03 Real Analysis I
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