

Now Open! Student Course Experience Surveys

It's time to share your feedback on your learning experience.

Here are a few quick tips to make the most impact with your comments.

- Chink constructively about your course(s).
- 🔵 Be respectful.
- **Q** Be specific and provide a reasonable amount of information.
- 👷 Consider what's working and what's not working.

Get started on your course surveys: mcmaster.bluera.com/mcmaster

Scan to get started on your course surveys.

https://mcmaster.bluera.com/mcmaster

Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 33 What is ℝ? Friday 4 April 2025

- Participation deadline for Assignment 5 was 1:25pm today.
- Solutions to Assignment 5 are now posted.
- In the slides from Wednesday's lecture, the end of the proof that "continuity on a compact set implies uniform continuity" has been corrected and improved. Make sure to download the updated version.
- New, exciting topic today...

What exactly is \mathbb{R} ?

Instructor: David Earn Mathematics 3A03 Real Analysis I

Poll

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Construction of Reals

Submit.

Informal introduction to construction of numbers (\mathbb{N})

- Assume we know what a set is.
- Define $0 \equiv \emptyset = \{\}$ (the empty set)

• Define
$$1 \equiv \{0\} = \{\emptyset\} = \{\{\}\}$$

Define
$$2 \equiv \{0,1\} = \{\{\},\{\{\}\}\}$$

- Define $n + 1 \equiv n \cup \{n\}$ (successor function)
- Define *natural numbers* $\mathbb{N} = \{1, 2, 3, ...\}$
- Thus, *n* is defined to be a set containing *n* elements.

Informal introduction to construction of numbers (\mathbb{N})

Historical note:

- We have defined n to be a set containing n elements.
- Logicians first tried to define n as "the set of <u>all</u> sets containing n elements".
- The earlier definition possibly better captures our intuitive notion of what n "really is", but such "sets" are unweildy and create serious challenges for development of mathematical foundations.

Informal introduction to construction of numbers (\mathbb{N})

Order of natural numbers:

Natural numbers defined as above have the right order:

$$m \leq n \iff m \subseteq n$$

<u>*Note:*</u> we define " \leq " on natural numbers via " \subseteq " on sets.

Addition and multiplication of natural numbers:

Still possible to define in terms of sets, but trickier.
 See this free e-book:

"Transition to Higher Mathematics" http://openscholarship.wustl.edu/books/10/.

Informal introduction to construction of numbers (\mathbb{Z})

Integers:

- Need additive inverses for all natural numbers.
- Need to define \cdot , +, -, for all pairs of integers.
- Again, possible to define everything via set theory.

- \blacksquare We'll assume we "know" what the naturals $\mathbb N$ and the integers $\mathbb Z$ "are".
- We can then *construct* the rationals \mathbb{Q} ...

Informal introduction to construction of numbers (\mathbb{Q})

Rationals:

- Idea: Associate \mathbb{Q} with $\mathbb{Z} \times \mathbb{N}$
- Use notation $\frac{a}{b} \in \mathbb{Q}$ if $(a,b) \in \mathbb{Z} \times \mathbb{N}$.
- Define equivalence of rational numbers:

$$\frac{a}{b} = \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d = b \cdot c$$

Define order for rational numbers:

$$\frac{a}{b} \leq \frac{c}{d} \quad \stackrel{\text{def}}{=} \quad a \cdot d \leq b \cdot c$$

Informal introduction to construction of numbers (\mathbb{Q})

Rationals, continued:

Define operations on rational numbers:

<u>a</u>	def	ad + bc
b ˈd		bd
a c	def	а·с
$\overline{b} \cdot \overline{d}$	_	$\overline{b \cdot d}$

- Constructed in this way (ultimately from the empty set),
 Q satisfies all the standard properties that we associate with the rational numbers.
- Formally, Q is a set of equivalence classes of Z × N. Extra Challenge Problem: Are "+" and "." well-defined on Q?

- Recall that we defined the natural numbers \mathbb{N} as sets: $0 \equiv \emptyset$, $1 \equiv \{0\}$, $2 \equiv \{0,1\}$, *etc.*
- For $m, n \in \mathbb{N}$ we <u>defined</u> m < n to mean $m \subset n$.
- We defined the rational numbers Q to be ordered pairs of integers (more precisely, Q is a set of equivalence classes of Z × N).
- In the same spirit, we can define real numbers <u>not</u> by determining what they "really are" but instead by settling for a definition that determines their mathematical properties completely.
- So, just as \mathbb{Z} can be built from \mathbb{N} , and \mathbb{Q} can be built from \mathbb{Z} , we can build \mathbb{R} from \mathbb{Q} .
- Richard Dedekind's idea was to construct a real number α as a set of rational numbers, in a way that naturally yields the one property of R that Q does not have: least upper bounds...

Dedekind's stroke of genius (on 24 Nov 1858) was to define α as "the set of rational numbers less than α " in a way that is <u>not</u> circular.

Definition (Real number)

A *real number* is a set $\alpha \subseteq \mathbb{Q}$, with the following four properties:

1 $\forall x \in \alpha$, if $y \in \mathbb{Q}$ and y < x, then $y \in \alpha$ *i.e.*, α is *downward closed*;

- 2 $\alpha \neq \emptyset$;
- 3 $\alpha \neq \mathbb{Q}$;

there is no greatest element in α,
 i.e., if x ∈ α then ∃y ∈ α such that y > x.

The set of all real numbers is denoted by \mathbb{R} .

<u>*Historical note:*</u> Dedekind originally defined a real number α as the <u>pair</u> of sets (*L*, *R*), where *L* is the set of rationals $< \alpha$ and *R* is the set of rationals $\geq \alpha$. A real number is then described as a **Dedekind cut**.

Example:
$$\sqrt{2} = \{q \in \mathbb{Q} : q^2 < 2 \text{ or } q < 0\}.$$

With real numbers defined, we can easily define an ordering on \mathbb{R} .

Definition (Order of real numbers)

```
If \alpha, \beta \in \mathbb{R} then \alpha < \beta iff \alpha \subset \beta.
(Similarly for >, \leq, and \geq.)
```

We now have enough to prove:

Theorem (\mathbb{R} is complete)

If $A \subset \mathbb{R}$, $A \neq \emptyset$, and A is bounded above, then A has a least upper bound.

We also need to define +, \cdot , 1 and α^{-1} . Then we can prove that \mathbb{R} *is a complete ordered field* and, moreover, it is the *unique* such field (up to isomorphism).

Proof that \mathbb{R} is complete.

Suppose $A \subset \mathbb{R}$, $A \neq \emptyset$, and A is bounded above. Let $\beta = \{x : x \in \alpha \text{ for some } \alpha \in A\} = \bigcup_{\alpha \in A} \alpha$.

Since each $x \in \beta$ is in some set $\alpha \subseteq \mathbb{Q}$, we have $\beta \subseteq \mathbb{Q}$. To verify that $\beta \in \mathbb{R}$, we check the four defining properties:

- **1** Suppose (i) $x \in \beta$ and (ii) y < x. (i) $\implies x \in \alpha$ for some $\alpha \in A$. But α is a real number, so (ii) $\implies y \in \alpha$. Hence $y \in \beta$.
- Since A ≠ Ø, ∃α ∈ A. Since α is a real number, ∃x ∈ α. This implies x ∈ β, so β ≠ Ø.
- **3** Since A is bounded above, there is some real number γ such that $\alpha < \gamma$ for every $\alpha \in A$. Since γ is a real number, there is some rational number $x \notin \gamma$. But $\alpha < \gamma$ means that $\alpha \subset \gamma$, so it follows that $x \notin \alpha$ for any $\alpha \in A$. This implies $x \notin \beta$, so $\beta \neq \mathbb{Q}$.

... continued...

Proof that \mathbb{R} is complete (*continued*).

4 Suppose x ∈ β. Then x ∈ α for some α ∈ A. Since α does not have a greatest element, ∃y ∈ Q with x < y and y ∈ α. But this implies y ∈ β; thus β does not have a greatest element.</p>

These four points establish that β is a real number. It remains to show that β is the least upper bound of A.

If $\alpha \in A$, then $\alpha \subseteq \beta$, *i.e.*, $\alpha \leq \beta$, so β is an upper bound for A. On the other hand, if γ is an upper bound for A, then $\alpha \leq \gamma$ for every $\alpha \in A$; this implies $\alpha \subseteq \gamma$, for every $\alpha \in A$, and hence $\beta \subseteq \gamma$, *i.e.*, $\beta \leq \gamma$. Thus β is the <u>least</u> upper bound of A.

Now Open! Student Course Experience Surveys

It's time to share your feedback on your learning experience.

Here are a few quick tips to make the most impact with your comments.

- 👷 Think constructively about your course(s).
- 🔵 Be respectful.
- **Q** Be specific and provide a reasonable amount of information.
- 👷 Consider what's working and what's not working.

Get started on your course surveys: mcmaster.bluera.com/mcmaster

Scan to get started on your course surveys.

https://mcmaster.bluera.com/mcmaster