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Announcements

New, exciting topic today. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metric Spaces

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Definition (Absolute Value function)
For any x ∈ R,

|x | def=
{

x if x ≥ 0,

−x if x < 0.

Theorem (Properties of the Absolute Value function)
For all x , y ∈ R:

1 − |x | ≤ x ≤ |x |.
2 |xy | = |x | |y |.
3 |x + y | ≤ |x | + |y |.
4 |x | − |y | ≤ |x − y |.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Definition (Distance function or metric)
The distance between two real numbers x and y is

d(x , y) = |x − y | .

Theorem (Properties of distance function or metric)

1 d(x , y) ≥ 0 distances are positive or zero
2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0
3 d(x , y) = d(y , x) distance is symmetric
4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Note: Any function satisfying these properties can be considered a
“distance” or “metric”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Given d(x , y) = |x − y |, the properties of the distance function are
equivalent to:

Theorem (Metric properties of the absolute value function)
For all x , y ∈ R:

1 |x | ≥ 0

2 |x | = 0 ⇐⇒ x = 0

3 |x | = |−x |

4 |x + y | ≤ |x | + |y | (the triangle inequality)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Slick proof of the triangle inequality

Theorem (The Triangle Inequality for the standard metric on R)
|x + y | ≤ |x | + |y | for all x , y ∈ R.

Proof.
Let s = sign(x + y). Then

|x + y | = s(x + y) = sx + sy ≤ |x | + |y | ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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A non-standard metric on R

Example (finite distance between every pair of real numbers)
Let f (x) = x

1+x , and define d(x , y) = f (|x − y |) . Prove that
d(x , y) can be interpreted as a distance between x and y because
it satisfies all the properties of a metric.

Proof: The only metric property that is non-trivial to prove is the triangle
inequality. Note that f (x) is an increasing function on [0, ∞), so the
usual triangle inequality, |x − y | ≤ |x − z | + |z − y |, implies

f (|x − y |) ≤ f (|x − z | + |z − y |) = |x − z | + |z − y |
1 + |x − z | + |z − y |

= |x − z |
1 + |x − z | + |z − y | + |z − y |

1 + |x − z | + |z − y |

≤ |x − z |
1 + |x − z | + |z − y |

1 + |z − y | = f (|x − z |) + f (|z − y |)

i.e., d(x , y) ≤ d(x , z) + d(z , y).
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Is “= vs ̸=” a metric?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Discrete metric

Example (Discrete metric on R)

Let d(x , y) =
{

0 x = y ,

1 x ̸= y .
Is d a metric on R?

By definition,d(x , y) is non-negative, zero iff x = y , and
symmetric. For the triangle inequality, if x = y then d(x , y) = 0
so the inequality holds for any z . If x ̸= y then d(x , y) = 1, and at
least one of x and y must not equal z , so the inequality says either
1 ≤ 1 or 1 ≤ 2.

Example (Discrete metric on any set X )
The argument that d(x , y) is a metric on R has nothing to do with
R specifically. d(x , y) is a metric on any set X .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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General metric space (X , d)

Definition (Metric space)
A metric space (X , d) is a non-empty set X together with a
distance function (or metric) d : X × X → R satisfying

1 d(x , y) ≥ 0 distances are positive or zero
2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0
3 d(x , y) = d(y , x) distance is symmetric
4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Much of our analysis of sequences of real numbers and topology of
R generalizes to any metric space. Very often, definitions and
proofs depend only on the the existence of a metric, not on |x |
specifically. Many useful inferences can be made by identifying a
metric on a space of interest.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Examples of metric spaces

Example (Metric spaces (X , d))

X = Q, with the standard metric d(x , y) = |x − y |.
As Q ⊂ R, each condition for d is satisfied in Q.

How different is (Q, d) from (R, d) ?

X = N, with the standard metric d(x , y) = |x − y |.
As N ⊂ R, each condition for d is satisfied in N.

X = R2 with d(x , y) =
√

(x1 − y1)2 + (x2 − y2)2, where we
write the vectors x = (x1, x2), y = (y1, y2) ∈ R2.

X = Rn with d(x , y) =
√∑n

i=1(xi − yi)2, where
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.
This metric on Rn is called the Euclidean distance.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metrics from norms
The Euclidean metric on Rn is the (Euclidean) length of the
difference of two vectors. This connection between length and
distance generalizes to any vector space in which length is defined.
Definition (Norm)
A norm on a vector space X is a real-valued function on X such
that if x , y ∈ X and α ∈ R then

1 ∥x∥ ≥ 0 and ∥x∥ = 0 iff x is the zero element in X ;
2 ∥αx∥ = |α| ∥x∥;
3 ∥x + y∥ ≤ ∥x∥ + ∥y∥.

A vector space X equipped with a norm ∥·∥ is said to be a normed
vector space. Any norm ∥·∥ induces a metric d via

d(x , y) = ∥x − y∥ .

Proving that a function is a norm is not necessarily easy. Let’s try for
the Euclidean norm. . . To that end, recall the notion of inner product . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Definition (Inner product)
An inner product on a vector space V over R is a function

⟨·, ·⟩ : V × V → R
such that for all u, v , w ∈ V and all scalars α ∈ R:

1 ⟨u, v⟩ = ⟨v , u⟩ conjugate symmetry
2 ⟨αu + v , w⟩ = α⟨u, w⟩ + ⟨v , w⟩ linearity in 1st argument
3 ⟨v , v⟩ ≥ 0 with equality iff v = 0 positive definiteness

A vector space equipped with an inner product is called an inner
product space.

Definition (Inner Product Norm)
The norm induced by an inner product ⟨·, ·⟩ is ∥u∥ =

√
⟨u, u⟩.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Theorem (Cauchy-Schwarz inequality)
Let V be a (real) inner product space with inner product ⟨·, ·⟩. For all
vectors u, v ∈ V , we have

|⟨u, v⟩| ≤ ∥u∥ ∥v∥
where ∥u∥ =

√
⟨u, u⟩ is the norm induced by the inner product.

Proof.
The standard proof begins with an idea that probably took someone a
long time to think of: Since ⟨v , v⟩ ≥ 0 for any v ∈ V , for any t ∈ R we
have

0 ≤ ⟨u + tv , u + tv⟩ = ⟨u, u⟩ + t ⟨u, v⟩ + t ⟨v , u⟩ + t2 ⟨v , v⟩
= ⟨u, u⟩ + 2t ⟨u, v⟩ + t2 ⟨v , v⟩

This is a quadratic polynomial in t, which is non-negative for all t ∈ R.
Hence, this quadratic has at most one real root. Consequently, its
discriminant is non-positive, i.e., (2 ⟨u, v⟩)2 − 4 ⟨u, u⟩ ⟨v , v⟩ ≤ 0.

continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Proof of Cauchy-Schwarz inequality (continued).
Simplifying the non-positive discriminant condition, we have

(⟨u, v⟩)2 ≤ ⟨u, u⟩ ⟨v , v⟩ .

Taking square roots, we have
|⟨u, v⟩| ≤ ∥u∥ ∥v∥ ,

as required.

How might you come up with such a proof?
Perhaps by guessing the result (based on knowing it in R2)
and then working backwards.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Participation deadline for Assignment 4 was at 11:25am today.

Last time. . .
Introduction to metric spaces

Critical ingredient: the triangle inequality

Cauchy-Schwarz inequality
(proved for real inner product spaces)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products
If X is an inner product space, then Cauchy-Schwarz allows us to
prove that the induced norm really is a norm (i.e., satisfies the
triangle inequality). For x , y ∈ X , we have

∥x + y∥2 = ⟨x + y , x + y⟩
= ⟨x , x⟩ + ⟨x , y⟩ + ⟨y , x⟩ + ⟨y , y⟩
= ∥x∥2 + ∥y∥2 + 2 ⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2 ∥x∥ ∥y∥
= (∥x∥ + ∥y∥)2

=⇒ ∥x + y∥ ≤ ∥x∥ + ∥y∥ .

In particular, Rn with the usual “dot product” ⟨x , y⟩ = ∑n
i=1 xiyi

induces the Euclidean norm ∥·∥2, which therefore really is a norm,
and d(x , y) = ∥x − y∥2 really is a metric (the Euclidean distance).
What about other norms induced by inner products?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Other metric spaces induced by inner products
We are accustomed to finite vectors:

x = (x1, x2) ∈ X = R2

x = (x1, x2, x3) ∈ X = R3

x = (x1, x2, . . . , xn) ∈ X = Rn

We can think of a sequence as an infinite vector:
x = (x1, x2, . . .) ∈ X =

{
{xn} : n ∈ N

}

The points in this space (X ) are infinite-dimensional vectors.
We can think of an infinite vector as a function:

xn = f (n) =⇒ (x1, x2, . . .) =
(
f (1), f (2), . . .)

The points in this space are functions: X =
{

f
∣∣ f : N → R

}
.

So we can generalize to other spaces via functions, e.g.,
C [0, 1] = {f : [0, 1] → R

∣∣ f continuous
}

All of the above spaces have a natural inner product, and hence a natural
norm and metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Other metric spaces induced by inner products

Inner products that convert the spaces on the previous slide into
(Euclidean) metric spaces:

Rn: ⟨x , y⟩ =
n∑

i=1
xiyi

ℓ2(R): ⟨x , y⟩ =
∞∑

i=1
xiyi

C [a, b]: ⟨f , g⟩ =
∫ b

a
f (x)g(x) dx

Note: ℓ2 includes only square-summable sequences:
∞∑

n=1
x2

n < ∞

Do we need to specify that C [a, b] contains only
square-integrable functions?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metrics from norms

Example (Taxicab distance)

Taxicab norm on Rn ∥x∥1 =
n∑

i=1
|xi |

In taxicab geometry, the lengths of the red,
blue, green, and yellow paths all equal 12, the
taxicab distance between the opposite corners,
and all four paths are shortest paths. Instead,
in Euclidean geometry, the red, blue, and
yellow paths still have length 12 but the green
path is the unique shortest path, with length
equal to the Euclidean distance between the
opposite corners, 6

√
2 ≈ 8.49.

Image and caption from Wikipedia article on “Taxicab geometry”.

Note: The green path can be followed. All the points of R2 are still present
when we measure distance with the taxicab metric. Any monotonic curve path
that joins the two points can be approximated by an arbitrarily fine grid, and
will have the same length. The metric does not impose a particular grid.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://en.wikipedia.org/wiki/Taxicab_geometry
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Metrics from norms

Example (p-metric)

p-norm on Rn (for p ≥ 1) ∥x∥p =
( n∑

i=1
|xi |p

) 1
p

.

p = 1 is the taxicab norm.
p = 2 is the Euclidean norm.

What happens as p → ∞? For any x ∈ Rn, we have

∥x∥p =
( n∑

i=1
|xi |p

) 1
p = |xk |

( n∑

i=1

∣∣∣∣
xi
xk

∣∣∣∣
p ) 1

p (|xk | > |xi | ∀i ̸= k)

= |xk |
(

1 +
∑

i ̸=k

∣∣∣∣
xi
xk

∣∣∣∣
p ) 1

p p → ∞−−−→ |xk |

What further work is required if ∄k )– |xk | > |xi | ∀i ̸= k?
Therefore, we define ∥·∥∞ to be
Max norm on Rn ∥x∥∞ = max

1≤i≤n
|xi |

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Which p-norms are induced?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Metrics from norms

Example (p-metric)

Proving that p = 1 and p = ∞ yield norms is a good exercise.

Only p = 2 is induced by an inner product.

That the p-norms for p ̸= 1, 2, ∞ are norms is harder to prove (but
true), so

dp(x , y) = ∥x − y∥p

is a metric on Rn for any p ≥ 1.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces
We can generalize the notion of “neighbourhood of a point” to any
metric space:
Definition (Open ball)
Let (X , d) be a metric space. If x0 ∈ X and r > 0 then the open
ball of radius r about x0 is

Br (x0) = {x ∈ X : d(x , x0) < r} .

x0 is said to be the centre of Br (x0).

Note: The notation B(x0, r) is also common (and used in TBB).
Definition (Neighbourhood)
A neighborhood of x is any set that contains an open ball Br (x)
for some r > 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Open balls in metric spaces)

In the metric space (R, standard), i.e., R with d(x , y) = |x − y |,
Br (x) = (x − r , x + r), an open interval of length 2r centred at x .
In Rn with Euclidean metric d(x , y) = ∥x − y∥2, Br (x) has a
spherical boundary (circular boundary if n = 2).
In Rn with a p-norm ∥·∥p, the ball is not spherical. For R2 with the
Taxicab metric d(x , y) = ∥x − y∥1, Br (x) is diamond shaped, and
for R2 with the Max norm ∥·∥∞, Br (x) is a square. We write Bp

r (x)
for balls in the p-norm (“p-balls”).

Bp
r (x)
p = 1
p = 2
p = 16

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (p-norm inequalities and containments)
The following inequalities relate the various p-norms on Rn,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n ∥x∥∞ , and ∥x∥1 ≤ √
n ∥x∥2 .

A good exercise.
Balls in the norm ∥·∥p are often written Bp

r (x). The inequalities above
imply that the following sets are nested:

B2
r/n(x) ⊂ B∞

r/n(x) ⊂ B1
r (x) ⊂ B2

r (x) ⊂ B∞
r (x).

Another good exercise.

Example (Balls in the discrete metric)
For any set X , in the discrete metric the balls are simple, but strange. If
0 < r ≤ 1 then Br (x) = {x}, a single point! If r > 1 then Br (x) = X , the
whole space! You can’t be “close” to a point x unless you are at x itself!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Discussion of metrics so far. . .
Metrics induced by norms, e.g., p-norms

Metrics from norms induced by inner products

Metric on any set: discrete metric

Balls (p-balls, discrete balls)

Note:
I added a note to the slide on the taxicab metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Convergence of a sequence in a metric space)
Let (X , d) be any metric space. A sequence (xn)n∈N converges to
x ∈ X , written xn

n → ∞−−−→ x or lim
n→∞

xn = x , if:

∀ε > 0, ∃N ∈ N )– d(xn, x) < ε ∀n ≥ N.

If the sequence does not converge to any x ∈ X , we say it
diverges.

Equivalently, xn
n → ∞−−−→ x if, for any ball Bε(x) centered at x , the

sequence (xn) lies inside that ball eventually (∃N ∈ N such that
xN ∈ Bε(x)), and stays inside it (xn ∈ Bε(x) ∀n > N), i.e.,

∀ε > 0, ∃N ∈ N )– xn ∈ Bε(x) ∀n ≥ N.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Boundedness in a metric space)
In any metric space (X , d), a sequence (xn) is bounded if there
exists x0 ∈ X and r > 0 such that xn ∈ Br (x0) for all n ∈ N.

Theorem
In any metric space (X , d), any convergent sequence is bounded.

Note: The converse is FALSE. e.g., xn = (−1)n in (R, standard).

Proof.
Taking ε = 1 (or any particular value) in the definition of convergence,
since xn

n → ∞−−−→ x in (X , d), ∃N ∈ N with d(xn, x) < ε = 1, ∀n ≥ N, i.e.,
xn ∈ B1(x), ∀n ≥ N. The earlier elements of the sequence, x1, . . . , xN−1,
are a finite collection, so we can choose r > 0 so that

r > max{d(x1, x), d(x2, x), . . . , d(xN−1, x), 1).
With this r , xn ∈ Br (x) holds ∀n ∈ N. So (xn) is bounded.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Interior point)
x ∈ E ⊆ X is an interior point of the set E in the metric space
(X , d) if x lies in an open ball that is contained in E , i.e.,

∃ε > 0 )– Bε(x) ⊂ E .

Definition (Interior of a set)
If E ⊆ X then the interior of E , denoted int(E ) or E ◦, is the set
of all interior points of E .

Note:
x ∈ E ◦ means not only that x ∈ E , but that there is an entire open ball
Bε(x) ⊂ E .
For any smaller radius, 0 < r < ε, we have x ∈ Br (x) ⊆ Bε(x) ⊆ E , so
the choice of ε is not unique for an interior point.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Open set)
A set E ⊆ X is open if every point of E is an interior point.

Example (Upper half-plane in (R2, Euclidean) )
Let W = {x = (x1, x2) : x2 > 0}. Then ∀x ∈ W , if 0 < ε < x2 then
Bε(x) ⊂ W . Thus all x ∈ W are interior points. So W is an open set.

Example (Any set in (X , discrete))
(X , discrete) means X is a non-empty set and d is the discrete metric d .
So, ∀x ∈ X ,

Bε(x) =
{

{x}, if 0 < ε ≤ 1,
X , if ε > 1.

Therefore, for any subset E ⊆ X and for any point x ∈ E ,
B1(x) = {x} ⊆ E , so every point of any set E is an interior point, so all
sets in the discrete metric are open sets!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Closed set)
A set F ⊆ X is closed if F c is open.

Example (Lower half-plane in (R2, Euclidean) )
Let Z = {x = (x1, x2) : x2 ≤ 0}. Then Z = W c, where W is the (open)
upper half-plane. So Z is a closed set.

Note: In (R2, Euclidean), a half-plane is open or closed depending on whether
none or all of the x -axis is included. If neither none nor all of the x -axis is
included then the half-plane is neither open nor closed.

Example (Any set in (X , discrete))
Any set E ⊆ X is open. So given any F ⊆ X , F c ⊆ X so F c is open. Hence F
is closed. So all sets are both open and closed with respect to the discrete
metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

When studying X = R, we defined closed sets differently.
Could we have used the same definition for a general metric space?

Definition (Accumulation Point or Limit Point or Cluster Point)
If E ⊆ X in a metric space (X , d) then x is an accumulation
point of E if every neighbourhood of x contains infinitely many
points of E ,

i.e., ∀ε > 0 Bε(x) ∩ (E \ {x}) ̸= ∅ .

Equivalently, x ∈ X is an accumulation point of the set E if and
only if there exists a sequence (xn)n∈N with xn ∈ E ∀n ∈ N, such
that xn ̸= x ∀n and xn

n → ∞−−−→ x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Theorem (Closed sets in a metric space)
A set F ⊆ X in a metric space (X , d) is closed if and only if F
contains all its accumulation points.

Proof.
First, suppose F is closed, and that x ∈ X is an accumulation point
of F . If x ̸∈ F , then x ∈ F c , which is open. Therefore, ∃ε > 0
such that Bε(x) ⊂ F c , i.e., Bε(x) ∩ F = ∅. But this contradicts x
being an accumulation point of F . So we must have x ∈ F .
Conversely, suppose F contains all its accumulation points. Then,
if z ∈ F c , z cannot be an accumulation point of F . But for any
ε > 0, z ∈ Bε(z), so ∃ε > 0 for which Bε(z) ∩ F = ∅, i.e.,
Bε(z) ⊂ F c . Hence F c is open, so F is closed.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Theorem (Properties of open sets in a metric space (X , d))

1 The sets X and ∅ are open.
2 Any intersection of a finite number of open sets is open.
3 Any union of an arbitrary collection of open sets is open.
4 The complement of an open set is closed.

Theorem (Properties of closed sets in a metric space (X , d))

1 The sets X and ∅ are closed.
2 Any union of a finite number of closed sets is closed.
3 Any intersection of an arbitrary collection of closed sets is

closed.
4 The complement of a closed set is open.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Set differences of balls

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Set differences of balls)
Suppose 0 < r1 < r2 and (X , d) is a metric space. If x ∈ X , is
it necessarily true that Br2(x) \ Br1(x) is open or closed?

No, it depends on the metric d . If (X , d) = (Rn, Euclidean) then
Br2(x) \ Br1(x) is neither open nor closed, e.g., in R1,

Br2(x) \ Br1(x) = (x − r2, x + r2) \ (x − r1, x+r1)
= (x − r2, x − r1] ∪ [x + r1, x + r2).

In contrast, if (X , d) = (Rn, discrete) then Br2(x) \ Br1(x) is open since
any set in (X , d) is both open and closed.
In general, if A and B are sets then

A \ B = A ∩ Bc,

so if A and B are both open, and B is also closed, then A \ B is open.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Isolated point)
If x ∈ E ⊆ X in a metric space (X , d) then x is an isolated point
of E if there is a neighbourhood of x for which the only point in E
is x itself, i.e.,

∃ε > 0 )– Bε(x) ∩ E = {x} .

Example
Consider the metric space (X , d) = ([0, 1], standard).
What are the isolated points of (X , d)?
There are no isolated points!

Now suppose (X , d) = ([0, 1], discrete).
What are the isolated points of (X , d)?
All points are isolated!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Last time. . .
More definitions and examples related to metric topology

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Closure of a set)
If (X , d) is a metric space and E ⊆ X then the closure of E , denoted
E , is the smallest closed set that contains E .
∴ E is closed, E ⊆ E , and if F is closed and E ⊆ F , then E ⊆ F .

Theorem
x ∈ E ⇐⇒ x is either an element of E or an accumulation point of E .
i.e., x ∈ E ⇐⇒ ∀ε > 0, Bε(x) ∩ E ̸= ∅.

Proof.
( ⇐= ) Suppose ∀ε > 0 Bε(x) ∩ E ̸= ∅. In order to derive a contradiction,
assume x ̸∈ E . Then x ∈ (E)c, which is open, so ∃ε > 0 such that
Bε(x) ⊆ (E)c, i.e., Bε(x) ∩ E = ∅. But E ⊂ E , so Bε(x) ∩ E = ∅. ⇒⇐

( =⇒ ) Suppose x ∈ E and, in order to derive a contradiction, suppose ∃ε > 0
)– Bε(x) ∩ E = ∅. Then E ⊆ (Bε(x))c. Hence E ⊆ (Bε(x))c = (Bε(x))c.
But x ∈ E and x /∈ (Bε(x))c. ⇒⇐. ∴ ∀ε > 0, Bε(x) ∩ E ̸= ∅.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in Rn)
In Rn with the max norm ∥·∥∞, the distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) is

d(x , y) = ∥x − y∥∞ = max{|xi − yi | : 1 ≤ i ≤ n}.

Consider the set E ⊂ Rn, where
E =

{
x ∈ Rn : 0 < xi < 1, ∀i ∈ {1, . . . , n}

}
.

What are the interior E ◦ and closure E of the set E?
n = 1: E = (0, 1), an open interval. E ◦ = (0, 1) = E . E = [0, 1].
n = 2: E = (0, 1) × (0, 1), an open square (an open ball in this metric).
E ◦ = (0, 1)2 = E . E = [0, 1]2.
n > 2: E = (0, 1)n, an open n-cube (an open ball in this metric).
E ◦ = (0, 1)n = E . E = [0, 1]n.
When we imagine an n-cube for n > 3, we are probably thinking about
n = 3 in our minds. But we can easily represent individual points in Rn in
the plane. How?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in Rn)
Suppose x , y ∈ E ⊂ R28, d(x , y) = ∥x − y∥∞.

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

The vertical black line indicates the distance between x and y .
Note: The same picture works for ℓ∞(R), the space of sequences that are
bounded, and in which the norm is defined by sup rather than max.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces
For the space of continuous functions on a closed interval [a, b], we defined the
Euclidean norm via the standard inner product. We can also define a p-norm
on this space for any p ≥ 1,

∥f ∥p =
(∫ b

a
|f (x)|p dx

)1/p

.

As in finite dimensions, limp→∞ ∥f ∥p = ∥f ∥∞, where
∥f ∥∞ ≡ sup{|f (x)| : a ≤ x ≤ b} = max{|f (x)| : a ≤ x ≤ b}.

Note: In the metric space (C [a, b], d) with d(f , g) = ∥f − g∥∞, convergence
of sequences of “points”, fn

n → ∞−−−−→ f , implies fn
n → ∞

unif−−−−→ f ∈ C [a, b].
Example
In the metric space C([a, b]), with distance given by the sup-norm,

d(f , g) = ∥f − g∥∞ = sup{|f (x) − g(x)| : a ≤ x ≤ b},

let
E =

{
f ∈ C([a, b]) : 0 < f (x) < 1, ∀x ∈ [a, b]

}
.

What are the interior E ◦ and closure E of the set E?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2
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0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Metric Spaces IV Topology of metric spaces 52/120

Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2
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0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦ and E for E = {f ∈ C([a, b]) : 0 < f (x) < 1 ∀x ∈ [a, b]})

If f ∈ C([a, b]) then f is continuous on [a, b] so, by the Extreme Value
Theorem, f attains its minimum and maximum values on [a, b], say at
u, v ∈ [a, b]. Since f (x) ∈ (0, 1) for all x ∈ [a, b], the extreme values, f (u) and
f (v), must also be in the open interval (0, 1). Therefore,

0 < f (u) ≤ f (x) ≤ f (v) < 1, ∀x ∈ [a, b]. (♡)
Thus, the range of f is [f (u), f (v)] ⊂ (0, 1). There is a gap (a finite interval)
that “insulates” f from the extreme values (0 and 1).
Let ε = min{f (u), 1 − f (v)}. Then ε > 0. Now consider g ∈ Bε(f ) ⊂ C([a, b]).

Then: ∥g − f ∥∞ < ε

=⇒ max{|g(x) − f (x)| : 0 ≤ x ≤ 1} < ε

=⇒ |g(x) − f (x)| < ε ∀x ∈ [0, 1]
=⇒ − ε < g(x) − f (x) < ε ∀x ∈ [0, 1]
=⇒ f (x) − ε < g(x) < f (x) + ε ∀x ∈ [0, 1]

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦ and E for E = {f ∈ C([a, b]) : 0 < f (x) < 1 ∀x ∈ [a, b]})

Now using (♡), we have

0 ≤ f (u)−ε ≤ f (x)−ε < g(x) < f (x)+ε ≤ f (v)+ε ≤ 1, ∀x ∈ [a, b],

from which we conclude that g ∈ E .

Since g was an arbitrary “point” in Bε(f ), it follows that Bε(f ) ⊆ E , so any
f ∈ E is an interior point, so E is open and E ◦ = E .

What about E, the closure of E?

We will show that the closure of E is the set

F = {f ∈ C([a, b]) : 0 ≤ f (x) ≤ 1, ∀x ∈ [a, b]} . (♠)

We will show E ⊆ F and then F ⊆ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦ and E for E = {f ∈ C([a, b]) : 0 < f (x) < 1 ∀x ∈ [a, b]})

(E ⊆ F ) First, consider any sequence (fn)n∈N with fn ∈ E , ∀n ∈ N, and
suppose fn

n → ∞−−−−→ f in the sup-norm, i.e., fn
n → ∞

unif−−−−→ f . Since uniform
convergence implies pointwise convergence, and fn(x) ∈ (0, 1), we must have
0 ≤ f (x) ≤ 1, ∀x ∈ N, and since fn

n → ∞
unif−−−−→ f , we know f ∈ C([a, b]), so f ∈ F .

Since f is a limit point of E and any limit point of E must lie in E , we must
have E ⊆ F .

(F ⊆ E) Suppose f ∈ F , and define the sequence fn ∈ E by

fn(x) =





1 − 1
n , if f (x) > 1 − 1

n ,

f (x), if 1
n ≤ f (x) ≤ 1 − 1

n ,
1
n , if f (x) < 1

n .

By construction, fn
n → ∞

unif−−−−→ f , and so f is a limit point of E so (by the theorem
about closures again) F ⊆ E . (Note: fn → f is illustrated in the next few slides.)

Therefore, F = E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Illustration of fn → f for fn ∈ E , f /∈ E , f ∈ F

f (x) = 1
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Last time: interior and closure

I added some graphs illustrating fn → f in the construction
that proved F ⊆ E at the end of the discussion of E ◦ and E
for E ⊂ C [a, b].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Boundary

Definition (Boundary Point)
If E ⊆ X in a metric space (X , d), then x is a boundary point of
E if every neighbourhood of x contains at least one point of E and
at least one point not in E , i.e.,

∀ε > 0 Bε(x) ∩ E ̸= ∅
∧ Bε(x) ∩ (X \ E ) ̸= ∅ .

Definition (Boundary)
If E ⊆ X then the boundary of E , denoted ∂E , is the set of all
boundary points of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Properties of boundary of E in a metric space (X , d))
For any E ⊂ X

∂E = E \ E ◦;
∂E is a closed set;
E is closed if and only if ∂E ⊆ E .

Excellent exercises. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦, E , ∂E for E = (0, 1)∞ ⊂ ℓ∞)
In the metric space ℓ∞, i.e., bounded sequences (xn) with distance given by the
sup-norm,

d(x , y) = ∥x − y∥∞ = sup{|xn − yn| : n ∈ N},

let
E =

{
(xn) ∈ ℓ∞ : 0 < xn < 1, ∀n ∈ N

}
.

What are the interior E ◦, closure E , and boundary ∂E of the set E?
Please do poll: Metric spaces: ℓ∞

Consider the following points in ℓ∞.
Are they in E? Are they in E ◦? Are they in E? Are they in ∂E?

( 1
2 , 1

2 , 1
2 , . . .)

(0, 0, 0, . . .)
(0, 1, 0, 1, . . .)

((−1)n)n∈N

( 1
n )n∈N

( 1
n+1 )n∈N

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces
We have previously considered continuous functions f : R → R.
What does it mean for a function to map one metric space to another
continuously?

Definition (Continuous function)
Suppose (M, d) and (N , ρ) are metric spaces, f : M → N , and x ∈ M. The
function f is continuous at x if:

∀ε > 0, ∃δ > 0 )–
(
y ∈ M ∧ d(x , y) < δ

)
=⇒ ρ

(
f (x), f (y)

)
< ε.

If f is continuous at every x ∈ M, we say that f is continuous on M.

Continuity is determined point-by-point, but it is not enough to know f
at a point; we must know how f behaves in a neighborhood of the point.
While (M, d) and (N , ρ) can be any metric spaces, the most common
situations are (N , ρ) = (R, standard) (so f : M → R) and
(M, d) = (N , ρ) (so f : M → M).
If M is a function space (e.g., C [a, b]) then f : M → R is often called a
functional and f : M → M is often called an operator.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces
It is usually helpful to rephrase the definition of continuity more geometrically
in terms of balls. If we write the ball of radius δ in the distance d on M as

Bd
δ (x) = {y ∈ M : d(x , y) < δ},

then
y ∈ M ∧ d(x , y) < δ ⇐⇒ y ∈ Bd

δ (x).
To rephrase the second part of the definition, for any subset E ⊆ M, we write
the image of E by f as

f (E) =
{

f (x) : x ∈ E
}

⊆ N .

Then, we can write “f (x) ∈ B, ∀x ∈ A” as “f (A) ⊆ B”, so the definition of
continuity can be expressed concisely as

∀ε > 0, ∃δ > 0 )– f
(
Bd

δ (x)
)

⊆ Bρ
ε

(
f (x)

)
.

So a function is continuous at x ∈ M if any ball about f (x) ∈ N is the image
of a ball about x ∈ M.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 5 is posted on the course web site.

Last time. . .
boundary

(0, 1)∞ in ℓ∞

continuous functions from one metric space to another

continuity expressed with balls

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces
As in R, in a general metric space we can express continuity using sequences.
Theorem (Continuity via sequences)
Let (M, d) and (N , ρ) be metric spaces, and suppose f : M → N . Then f
is continuous at x ∈ M if and only if for any sequence (xn)n∈N ⊆ M

xn
n → ∞−−−−→ x =⇒ f (xn) n → ∞−−−−→ f (x).

Thus, f is continuous on M iff, for every convergent sequence (xn),
lim

n→∞
f (xn) = f

(
lim

n→∞
xn

)
.

Proof.
( =⇒ ) Suppose f is continuous at x ∈ M, and xn

n → ∞−−−−→ x ∈ M. By
definition, given any ε > 0, ∃δ > 0 such that

y ∈ M ∧ d(x , y) < δ =⇒ ρ
(
f (x), f (y)

)
< ε. (∗)

But xn
n → ∞−−−−→ x implies ∃N ∈ N )– ∀n ≥ N, d(x , xn) < δ. So (∗) implies

ρ
(
f (x), f (xn)

)
< ε, i.e., f (xn) n → ∞−−−−→ f (x).

. . . continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Proof of continuity via sequences (continued).

( ⇐= ) Suppose that xn
n → ∞−−−−→ x =⇒ f (xn) n → ∞−−−−→ f (x) but f is not

continuous at x . Then, inverting the definition, ∃ε0 > 0 such that

for any δ > 0 we can find y = y(δ) ∈ M

with d(x , y) < δ and ρ
(
f (x), f (y)

)
≥ ε0.

In particular, for δ = 1
n , where n ∈ N, ∃yn ∈ M with

d(x , yn) <
1
n and ρ

(
f (x), f (yn)

)
≥ ε0.

This sequence (yn) converges to x , so by hypothesis f (yn) n → ∞−−−−→ f (x). But
this contradicts ρ

(
f (yn), f (x)

)
≥ ε0. ⇒⇐ Hence f is continuous at x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Example (Continuity in (R, standard) (refesher exercises))

1 Suppose f : R → R, f is continuous at all x ∈ R, and
f (q) = 0 for all q ∈ Q. Prove that f (x) = 0, ∀x ∈ R.

2 Let f : R → R,

f (x) = cos 1
x , ∀x ̸= 0, f (0) = a.

Show that no matter how we choose the value of a ∈ R, f is
never continuous at x = 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Another equivalent characterization of continuity depends on the
notion of:
Definition (Preimage or inverse image of a set)
Let f : M → N and A ⊆ N . The preimage or inverse image of
a A with respect to f is the set

f −1(A) = {x ∈ M : f (x) ∈ A}.

Note: The function f in this definition does not need to be
invertible. There may be many points in M that f maps to a
single point in N .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Theorem (Continuity via inverse images)
Let f : M → N . The following are equivalent:

1 f is continuous on M.
2 If U ⊂ N is an open set in N , then f −1(U) is an open set in M.
3 If F ⊂ N is a closed set in N , then f −1(F ) is a closed set in M.

Note: f continuous does not imply that f maps open sets to open sets. f (U)
need not be open if U is open, and f (F ) need not be closed if F is closed.
Example
Consider f : R → R defined by f (x) = 1 ∀x .
U = (0, 1) is an open set, but f (U) = {1} is not open.

Consider f : R → R defined by f (x) = ex ∀x .
F = R is a closed set, but f (F ) = (0, ∞) is not closed.

Note: There is no mention of the metrics in the theorem above. If there is no
metric on a space then we define continuity via inverse images.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Proof of continuity via inverse images.

( 1 =⇒ 3 ) Let E ⊂ N be any closed set, and take any sequence (xn)n∈N

with xn ∈ f −1(E), ∀n ∈ N, and xn → x in (M, d). Since f is continuous, it
follows that f (xn) n → ∞−−−−→ f (x) in (N , ρ). Since E is closed, f (x) ∈ E , which is
the same as saying x ∈ f −1(E). Therefore, f −1(E) is closed, so 3 holds.

( 3 =⇒ 2 ) Let V ⊆ N be any open set. Then V c is closed in (N , ρ). But

f −1(V c) = {x ∈ M : f (x) ∈ V c} = {x ∈ M | f (x) ̸∈ V } =
(
f −1(V )

)c
,

so by 3 f −1(V ) is open, i.e., 2 holds.

( 2 =⇒ 1 ) Let ε > 0 and x ∈ M be given. Since V = Bρ
ε (f (x)) is open in

(N , ρ), f −1(V ) is open in (M, d). Therefore, x is an interior point of f −1(V ),
so ∃δ > 0 for which Bd

δ (x) ⊆ f −1(V ), or, f (Bd
δ (x)) ⊆ V = Bρ

ε (f (x). Hence,
we conclude that f is continuous at any x ∈ M, i.e., 1 holds.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Example (Using inverse images to prove continuity)
Let’s revisit the first refresher exercise, but prove it using the inverse
image of closed sets ( 3 ) characterization of continuity.

Suppose f : R → R is continuous at all x ∈ R, and f (q) = 0 ∀ q ∈ Q.

Which closed set in N = R should we focus on?

The range of f contains 0, and that’s all we know about the range of f .
So consider F = {0}.

F is closed, and f −1(F ) contains Q, since f (q) = 0 ∀q ∈ Q. But f is
continuous. So f −1(F ) is closed. Therefore, f −1(F ) contains all the
accumulation points of Q, i.e., f −1(F ) contains all of R.

But R = f −1(F ) =⇒ f (R) = f (f −1(F )) = F = {0}, i.e., f (x) = 0 for
all x ∈ R.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Example (Good exercises involving the discrete metric)

1 Consider f : M → N with domain (M,discrete), and N any
metric space (N , ρ). Show that any such f is continuous.

2 Now suppose f : M → N but the range is (N ,discrete), and
(M, d) is a metric space that is not discrete (where “discrete”
means A ⊂ M is both open and closed iff A = M or A = ∅).
Show that if f is continuous then f is a constant function.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Example (f : [0, 1] → R)

Let f : [0, 1] → R, with the usual metric on M = R = N , and f (x) = x2

for all x ∈ [0, 1]. Then V = ( 1
4 , 2) is open in R, and

f −1(V ) =
{

x ∈ [0, 1] : x2 ∈
(

1
4 , 2

)}
=

(
1
2 , 1

]
,

which—as a subset of R with the usual metric—is neither open nor
closed! What went wrong?

Nothing is wrong! The domain is the metric space [0, 1], not R, and
the set

( 1
2 , 1

]
is open in [0, 1]. Since the domain space is [0, 1], no subset

can contain points that are not in [0, 1]. Balls in [0, 1] mean the
intersection of balls in R with [0, 1]. This is called the relative topology
(or subset topology or induced topology).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 5 is posted on the course web site.

Last time. . .
continuity via sequences

continuity via inverse images
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Continuity in metric spaces

Definition (Open or closed relative to A ⊂ M)

1 U ⊂ A is open relative to A if U = V ∩ A for an open set V of M.
2 F ⊂ A is closed relative to A if F = E ∩ A for a closed set E of M.

So the set U = ( 1
2 , 1] is open relative to A = [0, 1] in R, because (for

example) U = ( 1
2 , 2) ∩ A, with ( 1

2 , 2) an open set in R.
To distinguish a function f : M → N with domain A ⊂ M from a
function defined on all of M, we use the notation f |A for the restricted
function (with domain A) that agrees with f (x) for x ∈ A.

Example (Restriction of f : R → R to A ⊂ R)

Let f (x) =
{

−x , x ≤ 0,

1, x > 0,
and A = (−∞, 0].

Then f |A = − x is continuous on A, and, in particular, f |A is
continuous on the boundary of A, i.e., f |A is continuous at x = 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Continuity in subspaces of metric spaces:

In general, the equivalence of the inverse image definition and the
sequence definition of continuity applies for functions f |A that are
restricted to the domain A ⊂ M provided we define “open” and
“closed” in the relative topology on A, and restrict to sequences
(xn)n∈N with xn ∈ A ∀n ∈ N.

Continuity of operators on metric spaces of functions:

Remember that continuity of an operator T : M → N is distinct
from the question of whether elements (i.e., functions) in M and
N are continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Example (Is the integral operator continuous?)
Consider the operator T : C [a, b] → C [a, b] with T (f ) defined by

T (f )(x) =
∫ x

a
f (x) dx .

Is T continuous?
Note: If g = T (f ), then g is continuous by the “integrals are
continuous” theorem or the FFTC (since f is continuous).
The question is not whether such a g is continuous. It is whether
T is continuous. Phrased in terms of sequences, the question is:

If fn → f ∈ C [a, b] does it follow that T (fn) → T (f ) ∈ C [a, b]?

Does the answer depend the metric?

Instructor: David Earn Mathematics 3A03 Real Analysis I



Metric Spaces VII Topology of metric spaces 88/120

Continuity in metric spaces

Example (Is the integral operator continuous?)
The answer is yes, for the sup norm on C [a, b], ∥f ∥∞ = sup

x∈[a,b]
|f (x)| .

Proof: For any fn, f ∈ C [a, b], and any x ∈ [a, b], we have

|T (fn)(x) − T (f )(x)| =
∣∣∣∣
∫ x

a
(fn(t) − f (t)) dt

∣∣∣∣
now apply the

triangle inequality

≤
∫ x

a
|fn(t) − f (t)| dt

≤
∫ x

a
sup

t∈[a,b]
|fn(t) − f (t)| dt (♣)

If fn n → ∞−−−→ f wrt ∥·∥∞, i.e., fn n → ∞
unif−−−−→ f , then ∀ε > 0 ∃N ∈ N )–

∀n ≥ N
∥fn − f ∥∞ = sup

t∈[a,b]
|fn(t) − f (t)| < ε. (♠)

. . . continued . . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces

Example (Is the integral operator continuous?)
Inserting (♠) in (♣), we have, for any x ∈ [a, b],

|T (fn)(x) − T (f )(x)| <

∫ x

a
ε dt = ε(x − a) ≤ ε(b − a)

∴ ∥T (fn) − T (f )∥∞ = sup
x∈[a,b]

|T (fn)(x) − T (f )(x)| ≤ (b − a)ε.

Now, recognizing that in (♠) we can replace ε with ε
2(b−a) , we can

conclude that ∀ε > 0 ∃N ∈ N )– ∀n ≥ N, ∥T (fn) − T (f )∥∞ < ε,

i.e., T (fn) n → ∞
unif−−−−→ T (f ).

Thus, the integral operator (T ) is continuous on the metric space

C [a, b] with norm ∥·∥∞.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Completeness

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Completeness of metric spaces
The concept of a Cauchy sequence generalizes to any metric space.
Definition (Cauchy sequence in a metric space)
In a metric space (M, d), a sequence (xn)n∈N is called a Cauchy
sequence iff

∀ε > 0, ∃N ∈ N )– m, n ≥ N =⇒ d(xn, xm) < ε.

Theorem (Convergent implies Cauchy)
In a metric space (M, d), if (xn) converges then (xn) is a Cauchy
sequence.

Proof.
Given xn → x , for any ε > 0, we can find N ∈ N such that ∀n ≥ N,
d(xn, x) < ε

2 . Suppose both m ≥ N and n ≥ N. Then

d(xn, xm) ≤ d(xn, x) + d(x , xm) ≤ ε

2 + ε

2 = ε.

So (xn) is Cauchy.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Completeness of metric spaces
In (R, standard), in addition to convergent =⇒ Cauchy the
converse Cauchy =⇒ convergent is also true. This converse does
not hold in general in every metric space. If it does hold, then we say
the metric space is complete.
Definition (Complete metric space)
A metric space (M, d) is said to be complete iff every Cauchy sequence
in M converges (to a point in M).

Example (Q)
Let qn =

∑n
k=0

1
k! . Then qn ∈ Q for all n. But qn → e =

∑∞
k=0

1
k! ,

and we showed e /∈ Q. So Q is not complete.

In R, the existence of least upper bounds is equivalent to Cauchy
sequences always converging. So (R, standard) is complete. But R has
much more structure. It is a field and it has an order. In fact, R is the
unique, complete, ordered, field.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Completeness of metric spaces

Example (Euclidean n-space)

Rn with the Euclidean norm is complete.
Proof: Let (xk)k∈N be a Cauchy sequence in (Rn,Euclidean), say
xk = (xk,1, xk,2, . . . , xk,n). For each fixed j = 1, 2, . . . , n, the
sequence of real numbers (xk,j)k∈N is a Cauchy sequence in R, and
hence converges in R, say xk,j

k → ∞−−−→ x̂j ∈ R, for each j = 1, 2, . . . , n.
Define x̂ = (x̂1, x̂2, . . . , x̂n) ∈ Rn. Since each component of the
vector converges, it follows (from A5 Q1) that xk

k → ∞−−−→ x̂ .
Note: (Rn, Euclidean) is an example of a Hilbert Space, an inner
product space that is complete wrt the induced metric.
Rn is also complete wrt the Taxicab (∥·∥1) and Maximum (∥·∥∞)
norms (check!). In fact, for any p ≥ 1, Rn with norm ∥·∥p is
complete wrt to the metric d(x , y) = ∥x − y∥p induced by the
norm.
Any complete, normed, vector space is said to be a Banach Space.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Completeness of metric spaces

Example (More examples related to completeness)

For any interval I ⊂ R, the space Cb(I) of bounded continuous
functions, with distance determined by the sup-norm, is a complete
metric space. A good exercise.
Hint: If (fn) is a Cauchy sequence in Cb(I) with the sup norm, what
does that imply about sequences (fn(x)) in R for x ∈ I?

Consider the subspace of C [0, 1] consisting of polynomials. We call
this P[0, 1]. Is P[0, 1] complete? Can we construct a sequence of
polynomials that does not converge in P[0, 1]? The sequence

Pn(x) = 1 + x + x2

2 + x3

3! + · · · xn

n!
converges as n → ∞ (uniformly, i.e., in the sup norm) to ex , which
is not a polynomial =⇒ P[0, 1] is not complete.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Scan to get started on your course surveys.
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Announcements

Please complete the Student Experience Survey.

Last time. . .
Continuity of the integral as an operator on C [a, b].

Completeness of metric spaces.

Completeness of Cb(I)

Incompleteness of P[0, 1].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Completeness of metric spaces

Example (Completeness of C [a, b])

Consider C [a, b], the space of continuous functions on [a, b].

With the sup norm ∥·∥∞ it is complete, since convergence in ∥·∥∞
is equivalent to uniform convergence, and sequences of continuous
functions that converge uniformly, converge to continuous
functions.

What about the Taxicab norm ∥·∥1? Is C [a, b] complete wrt ∥·∥1?

No, it is not complete wrt ∥·∥1. Construct a sequence of
continuous functions on [a, b] that converges wrt ∥·∥1 to a
discontinuous function.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contractions

Much of applied mathematics consists of solving equations of various
sorts. Often we cannot find solutions but—with the help of metric space
theory—we can prove that solutions exist and/or are unique. Such proofs
can suggest useful methods for approximating solutions, even if we
cannot find them exactly.

Many problems can be expressed in the form of the question
Is there a solution to f (x) = x ?

Equivalently, does the function f have a fixed point?

One way to address this question uses the notion of a contraction.
Definition (Contraction mapping)
Let f : M → M be a function that maps some metric space (M, d) to
itself. We say that f is a contraction on M if ∃ α ∈ [0, 1) such that

d(f (x), f (y)) ≤ α d(x , y) ∀x , y ∈ M.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contractions

Theorem (Banach Fixed Point Thm or Contraction Mapping Principle)

Let (M, d) be a complete metric space, and f : M → M a
contraction mapping. Then there exists a unique fixed point
x∗ ∈ M, i.e., a unique point in M where f (x∗) = x∗.

Note:
The theorem guarantees that a fixed point x∗ exists and is unique, but
does not tell us what the fixed point is. In some situations, we can solve
the equation f (x∗) = x∗ for x∗, and hence determine which point is fixed.

Finding fixed points seems like a very special type of problem. But note
that if we are trying to solve f (x) = g(x) then that is equivalent to
finding a fixed point of the equation f (x) − g(x) + x = x , i.e., finding a
fixed point of h(x) = f (x) − g(x) + x .

h(x) can be defined as above iff addition is defined in M.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contractions

Example (Contraction mapping)

Suppose f : [a, b] → [a, b] is differentiable and, for some α ∈ (0, 1),
|f ′(x)| < α ∀x ∈ [a, b]. Then f has a unique fixed point x∗ ∈ [a, b].

Proof: [a, b] is a closed subset of the complete metric space
(R, standard), so ([a, b], standard) is a complete metric space (see
A5 Q9). Consequently, it is sufficient to show that f is a contraction
mapping on [a, b].

Let u, x ∈ [a, b]. By the Mean Value Theorem, ∃c between u and
x—and hence between a and b—such that

d(f (x), f (u)) = |f (x) − f (u)| = |f ′(c)(x − u)|
≤ α |x − u| = α d(x , u).

Thus, f is a contraction, so the contraction mapping principle
applies.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contractions

Lemma (To be used in proving the Contraction Mapping Principle)
Let (xn) be a sequence in a metric space (M, d), and suppose there exist
constants C > 0 and 0 < α < 1 such that

d(xn+1, xn) < C αn for all n ∈ N.

Then (xn) is a Cauchy sequence.

Proof.
Given ε > 0, we must find N ∈ N such that ∀ m, n ≥ N, d(xn, xm) < ε.
Without loss of generality, assume m > n. By the triangle inequality,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

=
m−1∑

k=n

d(xk , xk+1) <

m−1∑

k=n

Cαk <

∞∑

k=n

Cαk = C
∞∑

k=n

αk

= Cαn
∞∑

k=0

αk =
( C

1 − α

)
αn < ε for sufficiently large n.

Hence, (xn) is a Cauchy sequence.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contractions

Proof of the Contraction Mapping Principle.
For any x0 ∈ M, define a sequence (xn) by iteration of f (x):

xn = f (xn−1), ∀n ∈ N.

Thus, (xn) = (x0, x1, x2, x3, . . .)
= (x0, f (x0), f (f (x0)), f (f (f (x0))), . . .).

Since f : M → M is a contraction, ∃ α ∈ [0, 1) such that
d(xn+1, xn) = d(f (xn), f (xn−1))

≤ α d(xn, xn−1), ∀n ≥ 1,

= α d(f (xn−1), f (xn−2)), ∀n ≥ 2,

≤ α2 d(xn−1, xn−2), ∀n ≥ 2,

...
≤ αn d(x1, x0). . . . continued . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contractions

Proof of the Contraction Mapping Principle (continued).
Thus, defining C = d(x1, x0), we have

d(xn+1, xn) ≤ C αn, ∀n ∈ N.

So, by the lemma, (xn) is a Cauchy sequence in (M, d). Since the
metric space is complete, ∃x∗ ∈ M with xn

n → ∞−−−→ x∗. Notice that
d(f (x∗), x∗) ≤ d(f (x∗), xn+1) + d(xn+1, x∗)

= d(f (x∗), f (xn)) + d(xn+1, x∗)
≤ α d(x∗, xn) + d(xn+1, x∗) n → ∞−−−→ 0,

so f (x∗) = x∗, i.e., x∗ is a fixed point.
Finally, if y∗ is another fixed point, so f (y∗) = y∗, then

d(x∗, y∗) = d(f (x∗), f (y∗)) ≤ α d(x∗, y∗),
which is impossible for 0 < α < 1, unless x∗ = y∗, so the fixed
point is unique.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Applications of the contraction mapping principle

The construction of the sequence (xn) in the proof of the
contraction mapping principle can be interpreted as a dynamical
system in which f maps the state at the current time to the state a
certain time in the future.

The meaning of a fixed point of f is then an equilibrium of
the dynamical system.
If the hypotheses of the theorem are satisfied then, not only is
there a unique fixed point, but all initial states converge onto
that fixed point, in which case we say that the equilibrium is
globally asymptotically stable.

An alternative interpretation of a contraction mapping f is that as
we iterate it, we obtain a better and better approximation to the
exact solution of an equation (which might represent the full
time-evolution of a dynamical system, perhaps an ODE or PDE, for
example). Then, if the hypotheses of the theorem are satisfied in an
appropriate metric space, then it follows that there exists a unique
solution to the equation(s).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Contraction mappings
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Compactness of metric spaces

When we studied the topology of the real line, we defined a
compact set to be a set satisfying any one of three properties:

Definition (Compact Set in R)
A set E ⊆ R is said to be compact if it has any of the following
equivalent properties:

1 E is closed and bounded.
2 E has the Bolzano-Weierstrass property.
3 E has the Heine-Borel property.

This definition made sense in R because these properties are
equivalent in R with the standard metric.
What about R with other metrics?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness of metric spaces
Before answering that question, let’s introduce some terminology.

Definition (Sequentially compact i.e., Bolzano-Weierstrass property)
Let (M, d) be a metric space. A set K ⊆ M is sequentially compact if
every sequence in K has a subsequence that converges in K .

Thus, if K is sequentially compact then given any sequence (xn)n∈N in K ,
∃x ∈ K and a subsequence (xnk )k∈N, such that xnk

k → ∞−−−→ x .

Definition (Compact or covering compact i.e., Heine-Borel property)
Let (M, d) be a metric space. A set K ⊆ M is compact or covering
compact if every open cover of K contains a finite subcover.

Thus, if K is (covering) compact and {Uα}α∈I is an open cover of K
then the index set I contains a finite subset, say {α1, α2, . . . , αn}, such
that

K ⊆
n⋃

i=1
Uαi .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness of metric spaces

Example (Compactness in R with the discrete metric)

With the discrete metric, every singleton {x} is an open set.
Consequently, if K is any set then {{x} : x ∈ K} is an open cover of K .
If K is compact, then the open cover must contain a finite subcover, so
K must be a finite set. Thus, a set is compact iff it is finite.

However, with the discrete metric, every set is closed, and every set is
also bounded, since the maximum distance between any two points is 1.

Thus, with the discrete metric, “compact” and “closed and bounded” are
distinct properties.

Note: This argument made no reference to R. In any discrete metric
space (M, d), “compact” and “closed and bounded” are distinct
properties (provided M is not just a finite set).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness of metric spaces

Theorem (Compactness equivalents in metric spaces)
In any metric space (M, d), a set K ⊆ M is covering compact if
and only if it is sequentially compact.

This is a very important theorem. In any metric space, sequential
and covering compactness are equivalent, so whichever is more
convenient can be used in any context.
The equivalence of sequential and covering compactness in metric
spaces is not trivial to prove (TBB §13.12.3). This emphasizes the
importance of the theorem. You can always prove compactness
using either equivalent concept, but what you are proving may be
much easier if you make the “right” choice. The other choice may
effectively force you to re-prove the equivalence theorem.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Compactness of metric spaces

Example (Compactness in R with non-standard non-discrete metrics?)
The equivalence theorem implies that with any metric d a set K ⊆ R is
sequentially compact iff it is covering compact. We saw that if d is the
discrete metric then sets can be closed and bounded yet not compact.
Is this situation particular to the discrete metric?

No. For example, consider d(x , y) = min{1, |x − y |}.

d is a valid metric on R (check).
d restricts large distances to 1.
Every bounded set wrt the usual metric is also bounded wrt d .
The set H = [0, ∞) is closed and bounded wrt d , since its “diameter” is
1. But H is not compact: consider the open cover by intervals
{(n, n + 2)}n∈N ∪ {[0, 2)}; these intervals are open in (H, d), but no finite
collection of these intervals can cover all of [0, ∞).

Can you construct other metrics on R wrt which “closed and bounded” is
distinct from “compact”?

Instructor: David Earn Mathematics 3A03 Real Analysis I



Metric Spaces IX Compactness 117/120

Compactness of metric spaces

Example (Compactness in ℓ∞)

In the space ℓ∞ of bounded sequences of real numbers with the sup norm,

consider the points en ∈ ℓ∞ defined by en(i) = δin =
{

1, i = n,

0, i ̸= n,
so

e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), . . .

The set S = {en : n ∈ N} is the generalization—to infinite dimensions—of the
set of standard basis vectors in Rn.
Now consider the sequence (of sequences!) (en)n∈N ⊂ ℓ∞.
∥en∥∞ = 1 ∀n, and d(en, em) = ∥en − em∥∞ = 1 if n ̸= m. So (en) is not a
Cauchy sequence, and hence does not converge. Moreover, (en) has no
convergent subsequence, since d(en, em) = 1 if n ̸= m implies each point en
is isolated. (So S has no limit points.)
The set S is bounded in ℓ∞, since d(x , y) ≤ 1 ∀x , y ∈ S. S is also closed in
ℓ∞, since it has no limit points. But S not sequentially compact!
Thus, in ℓ∞, there are closed and bounded sets that are not compact. This is
typical for metric spaces that are infinite dimensional vector spaces.
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Compactness of metric spaces

Example (Compactness in C [0, 1] with the sup norm)

Consider C [0, 1] with distance defined by the sup-norm, and

S =
{

f ∈ C([0, 1]) : 0 ≤ f (x) ≤ 1 ∀x ∈ [0, 1]
}

,

which is a closed and bounded set (as we showed in a previous example).

Consider the sequence fn ∈ S,

fn(x) =





1 + 2n+1(x − 1
2n ), 1

2n+1 < x ≤ 1
2n

2n( 1
2n−1 − x), 1

2n < x < 1
2n−1

0, otherwise,

so fn has a tent of height 1 over x = 1
2n ,

on the interval [ 1
2n+1 , 1

2n−1 ], n ∈ N.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
f1(x)
f2(x)
f3(x)
f4(x)

d(fn, fm) = ∥fn − fm∥∞ = 1 for all n ̸= m, so this sequence has no convergent
subsequence in the sup norm. Hence S is not compact.
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Continuity and compactness

Theorem (Continuous functions map compact sets to compact sets)
Let f : M → N be continuous. If K is compact in M then f (K ) is
compact in N .

Proof.
Consider an open cover of f (K), say U = {Uα}α∈I . We will show that U
contains a finite subcover of f (K).
Since U covers f (K), f (K) ⊆

⋃
α∈I Uα. So, ∀x ∈ K , ∃α ∈ I such that

f (x) ∈ Uα. Therefore, ∀x ∈ K , ∃α ∈ I such that x ∈ f −1(Uα). But f is
continuous, so f −1(Uα) is an open set in M. Now observe that

K ⊆ f −1(f (K)
)

⊆
⋃

α∈I f −1(Uα) ,

which is an open cover of K . But K is compact, so there are finitely many
α ∈ I, say α1, . . . , αN , such that K ⊆ f −1(Uα1 ) ∪ · · · ∪ f −1(UαN ), a finite
subcover. But then

f (K) ⊆ Uα1 ∪ · · · ∪ UαN ,

a finite subcover of the original cover {Uα}α∈I of f (K). Since the original
cover was arbitrary, by definition f (K) is compact.
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Continuity and compactness

Corollary (Extreme Value Theorem in R (EVT) )
If K ⊂ R is compact and f : K → R is continuous then f attains
its maximum and minimum values on K.
Note: Since closed intervals [a, b] are compact, this includes the standard EVT.
Proof.
Since f is continuous and K is compact, the image f (K) ⊂ R is compact. But
compact subsets of R are exactly the closed and bounded subsets.
Therefore, f (K) is a bounded set, so f is a bounded function on K . Moreover,
since f (K) is closed—and the supremum and infimum of a bounded set in R
are either in the set or limit points of the set—f (K) contains its supremum and
infimum. That is, there exist real numbers m = inf f (K) and M = sup f (K)
such that m, M ∈ f (K). Thus, there exist points xmin, xmax ∈ K such that

f (xmin) = m and f (xmax) = M.

Hence, f attains its minimum and maximum on K .
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