26 Integration

27 Integration II

28 Integration III

2 Integration IV

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 26
Integration
Friday 8 November 2019

Integration

Integration

■ "Area of region $R(f, a, b)$ " is actually a very subtle concept.
■ We will only scratch the surface of it.

- Textbook presentation of integral is different (but equivalent).

Our treatment is closer to that in M. Spivak "Calculus" (2008).

Integration

- Contribution to "area of $R(f, a, b)$ " is positive or negative depending on whether f is positive or negative.

Lower sum

Upper sum

Lower and upper sums

Rigorous development of the integral

Definition (Partition)

Let $a<b$. A partition of the interval $[a, b]$ is a finite collection of points in $[a, b]$, one of which is a, and one of which is b.

We normally label the points in a partition

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b
$$

so the ith subinterval in the partition is

$$
\left[t_{i-1}, t_{i}\right]
$$

Rigorous development of the integral

Definition (Lower and upper sums)

Suppose f is bounded on $[a, b]$ and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$. Let

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \\
M_{i} & =\sup \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}
\end{aligned}
$$

The lower sum of f for P, denoted by $L(f, P)$, is defined as

$$
L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)
$$

The upper sum of f for P, denoted by $U(f, P)$, is defined as

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
$$

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- The lower and upper sums correspond to the total areas of rectangles lying below and above the graph of f in our motivating sketch.
- However, these sums have been defined precisely without any appeal to a concept of "area".
- The requirement that f be bounded on $[a, b]$ is essential in order that all the m_{i} and M_{i} be well-defined.

■ It is also essential that the m_{i} and M_{i} be defined as inf's and sup's (rather than maxima and minima) because f was not assumed continuous.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- Since $m_{i} \leq M_{i}$ for each i, we have

$$
m_{i}\left(t_{i}-t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right) . \quad i=1, \ldots, n .
$$

\therefore For any partition P of $[a, b]$ we have

$$
L(f, P) \leq U(f, P)
$$

because

$$
\begin{aligned}
& L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right), \\
& U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 26: Lower and Upper Sums

- Submit.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

■ More generally, if P_{1} and P_{2} are any two partitions of $[a, b]$, it ought to be true that

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

because $L\left(f, P_{1}\right)$ should be \leq area of $R(f, a, b)$, and $U\left(f, P_{2}\right)$ should be \geq area of $R(f, a, b)$.

■ But "ought to" and "should be" prove nothing, especially since we haven't yet even defined "area of $R(f, a, b)$ ".

- Before we can define "area of $R(f, a, b)$ ", we need to prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$ for any partitions $P_{1}, P_{2} \ldots$

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 27
Integration II
Tuesday 12 November 2019

Poll

■ Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 27: Assignment 3 Awaremess

- Submit.

Announcements

- Assignment 4 was due before class today.
- Assignment 5 is due on

Thursday 21 November 2019 @ 2:25pm via crowdmark.

- Math 3A03 Test \#2

Tuesday 26 November 2019, 5:30-7:00pm, in JHE 264
■ Assignment 6 will be due on Tuesday 3 December 2019 @ 2:25pm via crowdmark.

■ Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am-11:30am Location: MDCL 1105

Rigorous development of the integral

Lemma

If partition $P \subseteq$ partition Q (i.e., if every point of P is also in Q), then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.

Rigorous development of the integral

Proof of Lemma

As a first step, consider the special case in which the finer partition Q contains only one more point than P :

$$
\begin{aligned}
& P=\left\{t_{0}, \ldots, t_{n}\right\}, \\
& Q=\left\{t_{0}, \ldots, t_{k-1}, u, t_{k}, \ldots, t_{n}\right\},
\end{aligned}
$$

where

$$
a=t_{0}<t_{1}<\cdots<t_{k-1}<u<t_{k}<\cdots<t_{n}=b
$$

Let

$$
\begin{aligned}
m^{\prime} & =\inf \left\{f(x): x \in\left[t_{k-1}, u\right]\right\} \\
m^{\prime \prime} & =\inf \left\{f(x): x \in\left[u, t_{k}\right]\right\}
\end{aligned}
$$

. . . continued. . .

Rigorous development of the integral

Proof of Lemma (cont.)

$$
\begin{aligned}
& \text { Then } \quad L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right), \\
& \text { and } \quad L(f, Q)=\sum_{i=1}^{k-1} m_{i}\left(t_{i}-t_{i-1}\right)+m^{\prime}\left(u-t_{k-1}\right) \\
& +m^{\prime \prime}\left(t_{k}-u\right)+\sum_{i=k+1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) .
\end{aligned}
$$

\therefore To prove $L(f, P) \leq L(f, Q)$, it is enough to show

$$
m_{k}\left(t_{k}-t_{k-1}\right) \leq m^{\prime}\left(u-t_{k-1}\right)+m^{\prime \prime}\left(t_{k}-u\right) .
$$

. . . continued. . .

Rigorous development of the integral

Proof of Lemma (cont.)

Now note that since

$$
\left\{f(x): x \in\left[t_{k-1}, u\right]\right\} \quad \subseteq \quad\left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\}
$$

the RHS might contain some additional smaller numbers, so we must have

$$
\begin{aligned}
m_{k} & =\inf \left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\} \\
& \leq \inf \left\{f(x): x \in\left[t_{k-1}, u\right]\right\}=m^{\prime}
\end{aligned}
$$

Thus, $m_{k} \leq m^{\prime}$, and, similarly, $m_{k} \leq m^{\prime \prime}$.

$$
\begin{aligned}
\therefore \quad m_{k}\left(t_{k}-t_{k-1}\right) & =m_{k}\left(t_{k}-u+u-t_{k-1}\right) \\
& =m_{k}\left(u-t_{k-1}\right)+m_{k}\left(t_{k}-u\right) \\
& \leq m^{\prime}\left(u-t_{k-1}\right)+m^{\prime \prime}\left(t_{k}-u\right),
\end{aligned}
$$

Rigorous development of the integral

Proof of Lemma (cont.)

which proves (in this special case where Q contains only one more point than P) that $L(f, P) \leq L(f, Q)$.

We can now prove the general case by adding one point at a time.
If Q contains ℓ more points than P, define a sequence of partitions

$$
P=P_{0} \subset P_{1} \subset \cdots \subset P_{\ell}=Q
$$

such that P_{j+1} contains exactly one more point that P_{j}. Then

$$
L(f, P)=L\left(f, P_{0}\right) \leq L\left(f, P_{1}\right) \leq \cdots \leq L\left(f, P_{\ell}\right)=L(f, Q)
$$

so $L(f, P) \leq L(f, Q)$.
(Proving $U(f, P) \geq U(f, Q)$ is similar: check!)

Rigorous development of the integral

Theorem (Partition Theorem)

Let P_{1} and P_{2} be any two partitions of $[a, b]$. If f is bounded on $[a, b]$ then

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

Proof.

This is a straightforward consequence of the partition lemma.
Let $P=P_{1} \cup P_{2}$, i.e., the partition obtained by combining all the points of P_{1} and P_{2}.

Then

$$
L\left(f, P_{1}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P_{2}\right)
$$

Rigorous development of the integral

Important inferences that follow from the partition theorem:

- For any partition P^{\prime}, the upper sum $U\left(f, P^{\prime}\right)$ is an upper bound for the set of all lower sums $L(f, P)$.
$\therefore \quad \sup \{L(f, P): P$ a partition of $[a, b]\} \leq U\left(f, P^{\prime}\right) \quad \forall P^{\prime}$
$\therefore \quad \sup \{L(f, P)\} \leq \inf \{U(f, P)\}$
\therefore For any partition P^{\prime},

$$
L\left(f, P^{\prime}\right) \leq \sup \{L(f, P)\} \leq \inf \{U(f, P)\} \leq U\left(f, P^{\prime}\right)
$$

- If $\sup \{L(f, P)\}=\inf \{U(f, P)\}$ then we can define "area of $R(f, a, b)$ " to be this number.

■ Is it possible that $\sup \{L(f, P)\}<\inf \{U(f, P)\}$?

Rigorous development of the integral

Example

\exists ? $f:[a, b] \rightarrow \mathbb{R}$ such that $\sup \{L(f, P)\}<\inf \{U(f, P)\}$
Let

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \cap[a, b], \\ 0 & x \in \mathbb{Q}^{c} \cap[a, b] .\end{cases}
$$

$$
\text { If } \begin{aligned}
P=\left\{t_{0}, \ldots, t_{n}\right\} \text { then } m_{i}=0 & (\because \\
\text { and } M_{i}=1 & \left.\left(\because t_{i-1}, t_{i}\right] \cap \mathbb{Q}^{c} \neq \varnothing\right), \\
& {\left.\left[t_{i-1}, t_{i}\right] \cap \mathbb{Q} \neq \varnothing\right) . }
\end{aligned}
$$

$\therefore \quad L(f, P)=0 \quad$ and $\quad U(f, P)=b-a \quad$ for any partition P.
$\therefore \sup \{L(f, P)\}=0<b-a=\inf \{U(f, P)\}$.
Can we define "area of $R(f, a, b)$ " for such a weird function? Yes, but not in this course!

Rigorous development of the integral

Definition (Integrable)

A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be integrable on $[a, b]$ if it is bounded on $[a, b]$ and

$$
\begin{aligned}
& \sup \{L(f, P): P \text { a partition of }[a, b]\} \\
& \quad=\inf \{U(f, P): P \text { a partition of }[a, b]\} .
\end{aligned}
$$

In this case, this common number is called the integral of f on [a, b] and is denoted

$$
\int_{a}^{b} f
$$

Note: If f is integrable then for any partition P we have

$$
L(f, P) \leq \int_{a}^{b} f \leq U(f, P)
$$

and $\int_{a}^{b} f$ is the unique number with this property.

Rigorous development of the integral

- Notation:

$$
\int_{a}^{b} f(x) d x \quad \text { means precisely the same as } \quad \int_{a}^{b} f
$$

■ The symbol " $d x$ " has no meaning in isolation just as " $x \rightarrow$ " has no meaning except in $\lim _{x \rightarrow a} f(x)$.

- It is not clear from the definition which functions are integrable.
- The definition of the integral does not itself indicate how to compute the integral of any given integrable function. So far, without a lot more effort we can't say much more than these two things:

1 If $f(x) \equiv c$ then f is integrable on $[a, b]$ and $\int_{a}^{b} f=c \cdot(b-a)$.
2 The weird example function is not integrable.

Rigorous development of the integral

- A function that is integrable according to our definition is usually said to be Riemann integrable, to distinguish this definition from other definitions of integrability.

■ In Math 4A03 you will define "Lebesgue integrable", a more subtle concept that makes it possible to attach meaning to "area of $R(f, a, b)$ " for the weird example function (among others), and to precisely characterize functions that are Riemann integrable.

Rigorous development of the integral

Theorem (Equivalent condition for integrability)

A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ iff for all $\varepsilon>0$ there is a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\varepsilon .
$$

Proof.

2016 Assignment 5.

Note: This theorem is just a restatement of the definition of integrability. It is often more convenient to work with $\varepsilon>0$ than with sup's and inf's.

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 28
Integration III
Thursday 14 November 2019

Last time. .

Rigorous development of integral:
■ Definition: integrable.

- Example: non-integrable function.

■ Theorem: Equivalent " $\varepsilon-P$ " definition of integrable.

Poll

- Go to https:
//www.childsmath.ca/childsa/forms/main_login.php
■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 28: Integrable vs Continuous vs Differentiable
- Submit.

Integral theorems

Theorem

If f is continuous on $[a, b]$ then f is integrable on $[a, b]$.
Rough work to prepare for proof:

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

Given $\varepsilon>0$, choose a partition P that is so fine that $M_{i}-m_{i}<\varepsilon$ for all i. Then

$$
U(f, P)-L(f, P)<\varepsilon \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\varepsilon(b-a)
$$

Not quite what we want. So choose the partition P such that $M_{i}-m_{i}<\varepsilon /(b-a)$ for all i. To get that, choose P such that

$$
|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)} \quad \text { if }|x-y|<\max _{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)
$$

which we can do because f is uniformly continuous on $[a, b]$.

Integral theorems

Proof that continuous \Longrightarrow integrable

Since f is continuous on the compact set $[a, b]$, it is bounded on $[a, b]$ (which is the first requirement to be integrable on $[a, b]$).

Also, since f is continuous on the compact set $[a, b]$, it is uniformly continuous on $[a, b] . \quad \therefore \forall \varepsilon>0 \exists \delta>0$ such that $\forall x, y \in[a, b]$,

$$
|x-y|<\delta \quad \Longrightarrow \quad|f(x)-f(y)|<\frac{\varepsilon}{2(b-a)}
$$

Now choose a partition of $[a, b]$ such that the length of each subinterval $\left[t_{i-1}, t_{i}\right]$ is less than δ, i.e., $t_{i}-t_{i-1}<\delta$. Then, for any $x, y \in\left[t_{i-1}, t_{i}\right]$ we have $|x-y|<\delta$ and therefore
. . . continued. . .

Integral theorems

Proof that continuous \Longrightarrow integrable (cont.)

$$
\begin{aligned}
& |f(x)-f(y)|<\frac{\varepsilon}{2(b-a)} \quad \forall x, y \in\left[t_{i-1}, t_{i}\right] . \\
\therefore \quad & M_{i}-m_{i} \leq \frac{\varepsilon}{2(b-a)}<\frac{\varepsilon}{b-a} \quad i=1, \ldots, n .
\end{aligned}
$$

Since this is true for all i, it follows that

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right) \\
& <\frac{\varepsilon}{b-a} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\frac{\varepsilon}{b-a}(b-a)=\varepsilon
\end{aligned}
$$

Properties of the integral

Theorem (Integral segmentation)

Let $a<c<b$. If f is integrable on $[a, b]$, then f is integrable on $[a, c]$ and on $[c, b]$. Conversely, if f is integrable on $[a, c]$ and $[c, b]$ then f is integrable on $[a, b]$. Finally, if f is integrable on $[a, b]$ then

$$
\begin{equation*}
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f . \tag{৩}
\end{equation*}
$$

(a good exercise)
This theorem motivates these definitions:

$$
\int_{a}^{a} f=0 \quad \text { and } \quad \int_{a}^{b} f=-\int_{b}^{a} f \quad \text { if } a>b
$$

Then (Υ) holds for any $a, b, c \in \mathbb{R}$.

Properties of the integral

Theorem (Algebra of integrals - a.k.a. \int_{a}^{b} is a linear operator)
If f and g are integrable on $[a, b]$ and $c \in \mathbb{R}$ then $f+g$ and $c f$ are integrable on $[a, b]$ and
$1 \int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$;
(2) $\int_{a}^{b} c f=c \int_{a}^{b} f$.
(proofs are relatively easy; good exercises)

Theorem (Integral of a product)

If f and g are integrable on $[a, b]$ then $f g$ is integrable on $[a, b]$.
(proof is much harder; tough exercise)

Properties of the integral

Lemma (Integral bounds)

Suppose f is integrable on $[a, b]$. If $m \leq f(x) \leq M$ for all $x \in[a, b]$ then

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

Proof.

For any partition P, we must have $m \leq m_{i} \forall i$ and $M \geq M_{i} \forall i$.

$$
\begin{gathered}
\therefore \quad m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a) \quad \forall P \\
\therefore \quad m(b-a) \leq \sup \{L(f, P)\}=\int_{a}^{b} f=\inf \{U(f, P)\} \leq M(b-a) .
\end{gathered}
$$

Properties of the integral

Theorem (Integrals are continuous)

If f is integrable on $[a, b]$ and F is defined on $[a, b]$ by

$$
F(x)=\int_{a}^{x} f,
$$

then F is continuous on $[a, b]$.

Proof

Let's first consider $x_{0} \in[a, b)$ and show F is continuous from above at x_{0}, i.e., $\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$. If $x \in\left(x_{0}, b\right]$ then

$$
\begin{equation*}
(\varnothing) \Longrightarrow F(x)-F\left(x_{0}\right)=\int_{a}^{x} f-\int_{a}^{x_{0}} f=\int_{x_{0}}^{x} f \tag{*}
\end{equation*}
$$

... continued. . .

Properties of the integral

Proof (cont.)

Since f is integrable on $[a, b]$, it is bounded on $[a, b]$, so $\exists M>0$ such that

$$
-M \leq f(x) \leq M \quad \forall x \in[a, b]
$$

from which the integral bounds lemma implies

$$
-M\left(x-x_{0}\right) \leq \int_{x_{0}}^{x} f \leq M\left(x-x_{0}\right)
$$

$\therefore \quad(*) \Longrightarrow-M\left(x-x_{0}\right) \leq F(x)-F\left(x_{0}\right) \leq M\left(x-x_{0}\right)$.
\therefore For any $\varepsilon>0$ we can ensure $\left|F(x)-F\left(x_{0}\right)\right|<\varepsilon$ by requiring $0 \leq x-x_{0}<\varepsilon / M$, which proves $\lim _{x \rightarrow x_{0}^{+}} F(x)=F\left(x_{0}\right)$.
A similar argument starting from $x_{0} \in(a, b]$ and $x \in\left[a, x_{0}\right)$ yields $\lim _{x \rightarrow x_{0}^{-}} F(x)=F\left(x_{0}\right)$. Thus, "integrals are continuous".

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 29
Integration IV
Friday 15 November 2019

Please consider. . .

5 minute Student Respiratory IIIness Survey:
https://surveys.mcmaster.ca/limesurvey/index.php/893454

Please complete this anonymous survey to help us monitor the patterns of respiratory illness, over-the-counter drug use, and social contact within the McMaster community. There are no risks to filling out this survey, and your participation is voluntary. You do not need to answer any questions that make you uncomfortable, and all information provided will be kept strictly confidential. Thanks for participating.
-Dr. Marek Smieja (Infectious Diseases)

Announcements

- Assignment 5 is due on

Thursday 21 November 2019 @ 2:25pm via crowdmark.

- Math 3A03 Test \#2

Tuesday 26 November 2019, 5:30-7:00pm, in JHE 264
■ Assignment 6 will be due on Tuesday 3 December 2019 @ 2:25pm via crowdmark.

■ Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am-11:30am Location: MDCL 1105

Last time. . .

Rigorous development of integral:
■ continuous \Longrightarrow integrable.
■ Integral segmentation.

- Algebra of integrals.

■ Integral bounds lemma.

- Integrals are continuous.

Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus)

Let f be integrable on $[a, b]$, and define F on $[a, b]$ by

$$
F(x)=\int_{a}^{x} f
$$

If f is continuous at $c \in[a, b]$, then F is differentiable at c, and

$$
F^{\prime}(c)=f(c)
$$

Note: If $c=a$ or b, then $F^{\prime}(c)$ is understood to mean the rightor left-hand derivative of F.

Fundamental Theorem of Calculus

$$
\begin{aligned}
& F(c+h)-F(c) \simeq f(c+h) \cdot h \quad \Longrightarrow \quad \lim _{h \rightarrow 0} \frac{F(c+h)-F(c)}{h}=f(c) \\
& \quad \text { and } \quad \lim _{h \rightarrow 0} f(c+h)=f(c)
\end{aligned}
$$

Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus

Suppose $c \in[a, b)$, and $0<h \leq b-c$. Then the integral segmentation theorem implies

$$
F(c+h)-F(c)=\int_{c}^{c+h} f
$$

Motivated by the sketch, define

$$
\begin{aligned}
& m_{h}=\inf \{f(x): x \in[c, c+h]\} \\
& M_{h}=\sup \{f(x): x \in[c, c+h]\} .
\end{aligned}
$$

Then the integral bounds lemma implies

$$
m_{h} \cdot h \leq \int_{c}^{c+h} f \leq M_{h} \cdot h
$$

. . . continued. . .

Fundamental Theorem of Calculus

Proof of First Fundamental Theorem of Calculus (cont.)

 and hence$$
m_{h} \leq \frac{F(c+h)-F(c)}{h} \leq M_{h} .
$$

This inequality is true for any integrable function. However, because f is continuous at c, we have

$$
\lim _{h \rightarrow 0^{+}} m_{h}=\lim _{h \rightarrow 0^{+}} M_{h}=f(c)
$$

so the squeeze theorem implies

$$
F_{+}^{\prime}(c)=\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c)
$$

A similar argument for $c \in(a, b]$ and $c-a \leq h<0$ yields $F_{-}^{\prime}(c)=f(c)$.

Fundamental Theorem of Calculus

Corollary

If f is continuous on $[a, b]$ and $f=g^{\prime}$ for some function g, then

$$
\int_{a}^{b} f=g(b)-g(a)
$$

Proof.

Let $F(x)=\int_{a}^{x} f$. Then $\forall x \in[a, b], F^{\prime}(x)=f(x)$
(by FFTC).

$$
\Longrightarrow F^{\prime}=f=g^{\prime}
$$

$\therefore \exists c \in \mathbb{R}$ such that $F=g+c \quad(2016$ Assignment 5).
$\therefore F(a)=g(a)+c . \quad$ But $F(a)=\int_{a}^{a} f=0$, so $c=-g(a)$.
$\therefore F(x)=g(x)-g(a)$.
This is true, in particular, for $x=b$, so $\int_{a}^{b} f=g(b)-g(a)$.

Poll

- Go to https:
//www.childsmath.ca/childsa/forms/main_login.php
■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 29: Fundamental Theorem of Calculus
- Submit.

Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

If f is integrable on $[a, b]$ and $f=g^{\prime}$ for some function g, then

$$
\int_{a}^{b} f=g(b)-g(a)
$$

Notes:

■ This looks like the corollary to the first fundamental theorem, except that f is only assumed integrable, not continuous.

- Recall from Darboux's theorem that if $f=g^{\prime}$ for some g then f has the intermediate value property, but f need not be continuous.

■ g^{\prime} exists on $[a, b] \Longrightarrow$ Mean Value Theorem applies to g.

- The proof of the second fundamental theorem is completely different from the corollary to the first, because we cannot use the first fundamental theorem (which assumed f is continuous).

Fundamental Theorem of Calculus

Proof of Second Fundamental Theorem of Calculus

Let $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be any partition of $[a, b]$. By the Mean Value
Theorem, for each $i=1, \ldots, n, \exists x_{i} \in\left[t_{i-1}, t_{i}\right]$ such that

$$
g\left(t_{i}\right)-g\left(t_{i-1}\right)=g^{\prime}\left(x_{i}\right)\left(t_{i}-t_{i-1}\right)=f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

Define m_{i} and M_{i} as usual. Then $m_{i} \leq f\left(x_{i}\right) \leq M_{i} \forall i$, so

$$
\begin{aligned}
& m_{i}\left(t_{i}-t_{i-1}\right) \leq f\left(x_{i}\right)\left(t_{i}-t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right), \\
& \text { i.e., } \quad m_{i}\left(t_{i}-t_{i-1}\right) \leq g\left(t_{i}\right)-g\left(t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right) \text {. } \\
& \therefore \quad \sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) \leq \sum_{i=1}^{n}\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right) \leq \sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right) \\
& \text { i.e., } \quad L(f, P) \leq \quad g(b)-g(a) \leq U(f, P)
\end{aligned}
$$

for any partition $P . \quad \therefore \quad g(b)-g(a)=\int_{a}^{b} f$.

What useful things can we do with integrals?

- Compute areas of complicated shapes: find anti-derivatives and use the second fundamental theorem of calculus.
- Define trigonometric functions (rigorously).

■ Define logarithm and exponential functions (rigorously).

