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Announcements

New, exciting topic today. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metric Spaces

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Definition (Absolute Value function)
For any x ∈ R,

|x | def=
{

x if x ≥ 0,

−x if x < 0.

Theorem (Properties of the Absolute Value function)
For all x , y ∈ R:

1 − |x | ≤ x ≤ |x |.
2 |xy | = |x | |y |.
3 |x + y | ≤ |x | + |y |.
4 |x | − |y | ≤ |x − y |.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Metric Spaces Distance 6/72

The metric structure of R

Definition (Distance function or metric)
The distance between two real numbers x and y is

d(x , y) = |x − y | .

Theorem (Properties of distance function or metric)

1 d(x , y) ≥ 0 distances are positive or zero
2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0
3 d(x , y) = d(y , x) distance is symmetric
4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Note: Any function satisfying these properties can be considered a
“distance” or “metric”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Given d(x , y) = |x − y |, the properties of the distance function are
equivalent to:

Theorem (Metric properties of the absolute value function)
For all x , y ∈ R:

1 |x | ≥ 0

2 |x | = 0 ⇐⇒ x = 0

3 |x | = |−x |

4 |x + y | ≤ |x | + |y | (the triangle inequality)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Slick proof of the triangle inequality

Theorem (The Triangle Inequality for the standard metric on R)
|x + y | ≤ |x | + |y | for all x , y ∈ R.

Proof.
Let s = sign(x + y). Then

|x + y | = s(x + y) = sx + sy ≤ |x | + |y | ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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A non-standard metric on R

Example (finite distance between every pair of real numbers)
Let f (x) = x

1+x , and define d(x , y) = f (|x − y |) . Prove that
d(x , y) can be interpreted as a distance between x and y because
it satisfies all the properties of a metric.

Proof: The only metric property that is non-trivial to prove is the triangle
inequality. Note that f (x) is an increasing function on [0, ∞), so the
usual triangle inequality, |x − y | ≤ |x − z | + |z − y |, implies

f (|x − y |) ≤ f (|x − z | + |z − y |) = |x − z | + |z − y |
1 + |x − z | + |z − y |

= |x − z |
1 + |x − z | + |z − y | + |z − y |

1 + |x − z | + |z − y |

≤ |x − z |
1 + |x − z | + |z − y |

1 + |z − y | = f (|x − z |) + f (|z − y |)

i.e., d(x , y) ≤ d(x , z) + d(z , y).
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Is “= vs ̸=” a metric?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Discrete metric

Example (Discrete metric on R)

Let d(x , y) =
{

0 x = y ,

1 x ̸= y .
Is d a metric on R?

By definition,d(x , y) is non-negative, zero iff x = y , and
symmetric. For the triangle inequality, if x = y then d(x , y) = 0
so the inequality holds for any z . If x ̸= y then d(x , y) = 1, and at
least one of x and y must not equal z , so the inequality says either
1 ≤ 1 or 1 ≤ 2.

Example (Discrete metric on any set X )
The argument that d(x , y) is a metric on R has nothing to do with
R specifically. d(x , y) is a metric on any set X .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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General metric space (X , d)

Definition (Metric space)
A metric space (X , d) is a non-empty set X together with a
distance function (or metric) d : X × X → R satisfying

1 d(x , y) ≥ 0 distances are positive or zero
2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0
3 d(x , y) = d(y , x) distance is symmetric
4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Much of our analysis of sequences of real numbers and topology of
R generalizes to any metric space. Very often, definitions and
proofs depend only on the the existence of a metric, not on |x |
specifically. Many useful inferences can be made by identifying a
metric on a space of interest.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Examples of metric spaces

Example (Metric spaces (X , d))

X = Q, with the standard metric d(x , y) = |x − y |.
As Q ⊂ R, each condition for d is satisfied in Q.

How different is (Q, d) from (R, d) ?

X = N, with the standard metric d(x , y) = |x − y |.
As N ⊂ R, each condition for d is satisfied in N.

X = R2 with d(x , y) =
√

(x1 − y1)2 + (x2 − y2)2, where we
write the vectors x = (x1, x2), y = (y1, y2) ∈ R2.

X = Rn with d(x , y) =
√∑n

i=1(xi − yi)2, where
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.
This metric on Rn is called the Euclidean distance.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metrics from norms
The Euclidean metric on Rn is the (Euclidean) length of the
difference of two vectors. This connection between length and
distance generalizes to any vector space in which length is defined.
Definition (Norm)
A norm on a vector space X is a real-valued function on X such
that if x , y ∈ X and α ∈ R then

1 ∥x∥ ≥ 0 and ∥x∥ = 0 iff x is the zero element in X ;
2 ∥αx∥ = |α| ∥x∥;
3 ∥x + y∥ ≤ ∥x∥ + ∥y∥.

A vector space X equipped with a norm ∥·∥ is said to be a normed
vector space. Any norm ∥·∥ induces a metric d via

d(x , y) = ∥x − y∥ .

Proving that a function is a norm is not necessarily easy. Let’s try for
the Euclidean norm. . . To that end, recall the notion of inner product . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Definition (Inner product)
An inner product on a vector space V over R is a function

⟨·, ·⟩ : V × V → R
such that for all u, v , w ∈ V and all scalars α ∈ R:

1 ⟨u, v⟩ = ⟨v , u⟩ conjugate symmetry
2 ⟨αu + v , w⟩ = α⟨u, w⟩ + ⟨v , w⟩ linearity in 1st argument
3 ⟨v , v⟩ ≥ 0 with equality iff v = 0 positive definiteness

A vector space equipped with an inner product is called an inner
product space.

Definition (Inner Product Norm)
The norm induced by an inner product ⟨·, ·⟩ is ∥u∥ =

√
⟨u, u⟩.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Theorem (Cauchy-Schwarz inequality)
Let V be a (real) inner product space with inner product ⟨·, ·⟩. For all
vectors u, v ∈ V , we have

|⟨u, v⟩| ≤ ∥u∥ ∥v∥
where ∥u∥ =

√
⟨u, u⟩ is the norm induced by the inner product.

Proof.
The standard proof begins with an idea that probably took someone a
long time to think of: Since ⟨v , v⟩ ≥ 0 for any v ∈ V , for any t ∈ R we
have

0 ≤ ⟨u + tv , u + tv⟩ = ⟨u, u⟩ + t ⟨u, v⟩ + t ⟨v , u⟩ + t2 ⟨v , v⟩
= ⟨u, u⟩ + 2t ⟨u, v⟩ + t2 ⟨v , v⟩

This is a quadratic polynomial in t, which is non-negative for all t ∈ R.
Hence, this quadratic has at most one real root. Consequently, its
discriminant is non-positive, i.e., (2 ⟨u, v⟩)2 − 4 ⟨u, u⟩ ⟨v , v⟩ ≤ 0.

continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Proof of Cauchy-Schwarz inequality (continued).
Simplifying the non-positive discriminant condition, we have

(⟨u, v⟩)2 ≤ ⟨u, u⟩ ⟨v , v⟩ .

Taking square roots, we have
|⟨u, v⟩| ≤ ∥u∥ ∥v∥ ,

as required.

How might you come up with such a proof?
Perhaps by guessing the result (based on knowing it in R2)
and then working backwards.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Participation deadline for Assignment 4 was at 11:25am today.

Last time. . .
Introduction to metric spaces

Critical ingredient: the triangle inequality

Cauchy-Schwarz inequality
(proved for real inner product spaces)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products
If X is an inner product space, then Cauchy-Schwarz allows us to
prove that the induced norm really is a norm (i.e., satisfies the
triangle inequality). For x , y ∈ X , we have

∥x + y∥2 = ⟨x + y , x + y⟩
= ⟨x , x⟩ + ⟨x , y⟩ + ⟨y , x⟩ + ⟨y , y⟩
= ∥x∥2 + ∥y∥2 + 2 ⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2 ∥x∥ ∥y∥
= (∥x∥ + ∥y∥)2

=⇒ ∥x + y∥ ≤ ∥x∥ + ∥y∥ .

In particular, Rn with the usual “dot product” ⟨x , y⟩ = ∑n
i=1 xiyi

induces the Euclidean norm ∥·∥2, which therefore really is a norm,
and d(x , y) = ∥x − y∥2 really is a metric (the Euclidean distance).
What about other norms induced by inner products?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Other metric spaces induced by inner products
We are accustomed to finite vectors:

x = (x1, x2) ∈ X = R2

x = (x1, x2, x3) ∈ X = R3

x = (x1, x2, . . . , xn) ∈ X = Rn

We can think of a sequence as an infinite vector:
x = (x1, x2, . . .) ∈ X =

{
{xn} : n ∈ N

}

The points in this space (X ) are infinite-dimensional vectors.
We can think of an infinite vector as a function:

xn = f (n) =⇒ (x1, x2, . . .) =
(
f (1), f (2), . . .)

The points in this space are functions: X =
{

f
∣∣ f : N → R

}
.

So we can generalize to other spaces via functions, e.g.,
C [0, 1] = {f : [0, 1] → R

∣∣ f continuous
}

All of the above spaces have a natural inner product, and hence a natural
norm and metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Other metric spaces induced by inner products

Inner products that convert the spaces on the previous slide into
(Euclidean) metric spaces:

Rn: ⟨x , y⟩ =
n∑

i=1
xiyi

ℓ2(R): ⟨x , y⟩ =
∞∑

i=1
xiyi

C [a, b]: ⟨f , g⟩ =
∫ b

a
f (x)g(x) dx

Note: ℓ2 includes only square-summable sequences:
∞∑

n=1
x2

n < ∞

Do we need to specify that C [a, b] contains only
square-integrable functions?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metrics from norms

Example (Taxicab distance)

Taxicab norm on Rn ∥x∥1 =
n∑

i=1
|xi |

In taxicab geometry, the lengths of the red,
blue, green, and yellow paths all equal 12, the
taxicab distance between the opposite corners,
and all four paths are shortest paths. Instead,
in Euclidean geometry, the red, blue, and
yellow paths still have length 12 but the green
path is the unique shortest path, with length
equal to the Euclidean distance between the
opposite corners, 6

√
2 ≈ 8.49.

Image and caption from Wikipedia article on “Taxicab geometry”.

Note: The green path can be followed. All the points of R2 are still present
when we measure distance with the taxicab metric. Any monotonic curve path
that joins the two points can be approximated by an arbitrarily fine grid, and
will have the same length. The metric does not impose a particular grid.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://en.wikipedia.org/wiki/Taxicab_geometry
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Metrics from norms

Example (p-metric)

p-norm on Rn (for p ≥ 1) ∥x∥p =
( n∑

i=1
|xi |p

) 1
p

.

p = 1 is the taxicab norm.
p = 2 is the Euclidean norm.

What happens as p → ∞? For any x ∈ Rn, we have

∥x∥p =
( n∑

i=1
|xi |p

) 1
p = |xk |

( n∑

i=1

∣∣∣∣
xi
xk

∣∣∣∣
p ) 1

p (|xk | > |xi | ∀i ̸= k)

= |xk |
(

1 +
∑

i ̸=k

∣∣∣∣
xi
xk

∣∣∣∣
p ) 1

p p → ∞−−−→ |xk |

What further work is required if ∄k )– |xk | > |xi | ∀i ̸= k?
Therefore, we define ∥·∥∞ to be
Max norm on Rn ∥x∥∞ = max

1≤i≤n
|xi |

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Which p-norms are induced?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Metrics from norms

Example (p-metric)

Proving that p = 1 and p = ∞ yield norms is a good exercise.

Only p = 2 is induced by an inner product.

That the p-norms for p ̸= 1, 2, ∞ are norms is harder to prove (but
true), so

dp(x , y) = ∥x − y∥p

is a metric on Rn for any p ≥ 1.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces
We can generalize the notion of “neighbourhood of a point” to any
metric space:
Definition (Open ball)
Let (X , d) be a metric space. If x0 ∈ X and r > 0 then the open
ball of radius r about x0 is

Br (x0) = {x ∈ X : d(x , x0) < r} .

x0 is said to be the centre of Br (x0).

Note: The notation B(x0, r) is also common (and used in TBB).
Definition (Neighbourhood)
A neighborhood of x is any set that contains an open ball Br (x)
for some r > 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Open balls in metric spaces)

In the metric space (R, standard), i.e., R with d(x , y) = |x − y |,
Br (x) = (x − r , x + r), an open interval of length 2r centred at x .
In Rn with Euclidean metric d(x , y) = ∥x − y∥2, Br (x) has a
spherical boundary (circular boundary if n = 2).
In Rn with a p-norm ∥·∥p, the ball is not spherical. For R2 with the
Taxicab metric d(x , y) = ∥x − y∥1, Br (x) is diamond shaped, and
for R2 with the Max norm ∥·∥∞, Br (x) is a square. We write Bp

r (x)
for balls in the p-norm (“p-balls”).

Bp
r (x)
p = 1
p = 2
p = 16

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (p-norm inequalities and containments)
The following inequalities relate the various p-norms on Rn,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n ∥x∥∞ , and ∥x∥1 ≤ √
n ∥x∥2 .

A good exercise.
Balls in the norm ∥·∥p are often written Bp

r (x). The inequalities above
imply that the following sets are nested:

B2
r/n(x) ⊂ B∞

r/n(x) ⊂ B1
r (x) ⊂ B2

r (x) ⊂ B∞
r (x).

Another good exercise.

Example (Balls in the discrete metric)
For any set X , in the discrete metric the balls are simple, but strange. If
0 < r ≤ 1 then Br (x) = {x}, a single point! If r > 1 then Br (x) = X , the
whole space! You can’t be “close” to a point x unless you are at x itself!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Discussion of metrics so far. . .
Metrics induced by norms, e.g., p-norms

Metrics from norms induced by inner products

Metric on any set: discrete metric

Balls (p-balls, discrete balls)

Note:
I added a note to the slide on the taxicab metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Convergence of a sequence in a metric space)
Let (X , d) be any metric space. A sequence (xn)n∈N converges to
x ∈ X , written xn

n → ∞−−−→ x or lim
n→∞

xn = x , if:

∀ε > 0, ∃N ∈ N )– d(xn, x) < ε ∀n ≥ N.

If the sequence does not converge to any x ∈ X , we say it
diverges.

Equivalently, xn
n → ∞−−−→ x if, for any ball Bε(x) centered at x , the

sequence (xn) lies inside that ball eventually (∃N ∈ N such that
xN ∈ Bε(x)), and stays inside it (xn ∈ Bε(x) ∀n > N), i.e.,

∀ε > 0, ∃N ∈ N )– xn ∈ Bε(x) ∀n ≥ N.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Boundedness in a metric space)
In any metric space (X , d), a sequence (xn) is bounded if there
exists x0 ∈ X and r > 0 such that xn ∈ Br (x0) for all n ∈ N.

Theorem
In any metric space (X , d), any convergent sequence is bounded.

Note: The converse is FALSE. e.g., xn = (−1)n in (R, standard).

Proof.
Taking ε = 1 (or any particular value) in the definition of convergence,
since xn

n → ∞−−−→ x in (X , d), ∃N ∈ N with d(xn, x) < ε = 1, ∀n ≥ N, i.e.,
xn ∈ B1(x), ∀n ≥ N. The earlier elements of the sequence, x1, . . . , xN−1,
are a finite collection, so we can choose r > 0 so that

r > max{d(x1, x), d(x2, x), . . . , d(xN−1, x), 1).
With this r , xn ∈ Br (x) holds ∀n ∈ N. So (xn) is bounded.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Interior point)
x ∈ E ⊆ X is an interior point of the set E in the metric space
(X , d) if x lies in an open ball that is contained in E , i.e.,

∃ε > 0 )– Bε(x) ⊂ E .

Definition (Interior of a set)
If E ⊆ X then the interior of E , denoted int(E ) or E ◦, is the set
of all interior points of E .

Note:
x ∈ E ◦ means not only that x ∈ E , but that there is an entire open ball
Bε(x) ⊂ E .
For any smaller radius, 0 < r < ε, we have x ∈ Br (x) ⊆ Bε(x) ⊆ E , so
the choice of ε is not unique for an interior point.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Open set)
A set E ⊆ X is open if every point of E is an interior point.

Example (Upper half-plane in (R2, Euclidean) )
Let W = {x = (x1, x2) : x2 > 0}. Then ∀x ∈ W , if 0 < ε < x2 then
Bε(x) ⊂ W . Thus all x ∈ W are interior points. So W is an open set.

Example (Any set in (X , discrete))
(X , discrete) means X is a non-empty set and d is the discrete metric d .
So, ∀x ∈ X ,

Bε(x) =
{

{x}, if 0 < ε ≤ 1,
X , if ε > 1.

Therefore, for any subset E ⊆ X and for any point x ∈ E ,
B1(x) = {x} ⊆ E , so every point of any set E is an interior point, so all
sets in the discrete metric are open sets!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Closed set)
A set F ⊆ X is closed if F c is open.

Example (Lower half-plane in (R2, Euclidean) )
Let Z = {x = (x1, x2) : x2 ≤ 0}. Then Z = W c, where W is the (open)
upper half-plane. So Z is a closed set.

Note: In (R2, Euclidean), a half-plane is open or closed depending on whether
none or all of the x -axis is included. If neither none nor all of the x -axis is
included then the half-plane is neither open nor closed.

Example (Any set in (X , discrete))

Any set E ⊆ X is open. So given any F ⊆ X , F c ⊆ X so F c is open. Hence F
is closed. So all sets are both open and closed with respect to the discrete
metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

When studying X = R, we defined closed sets differently.
Could we have used the same definition for a general metric space?

Definition (Accumulation Point or Limit Point or Cluster Point)
If E ⊆ X in a metric space (X , d) then x is an accumulation
point of E if every neighbourhood of x contains infinitely many
points of E ,

i.e., ∀ε > 0 Bε(x) ∩ (E \ {x}) ̸= ∅ .

Equivalently, x ∈ X is an accumulation point of the set E if and
only if there exists a sequence (xn)n∈N with xn ∈ E ∀n ∈ N, such
that xn ̸= x ∀n and xn

n → ∞−−−→ x .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Theorem (Closed sets in a metric space)
A set F ⊆ X in a metric space (X , d) is closed if and only if F
contains all its accumulation points.

Proof.
First, suppose F is closed, and that x ∈ X is an accumulation point
of F . If x ̸∈ F , then x ∈ F c , which is open. Therefore, ∃ε > 0
such that Bε(x) ⊂ F c , i.e., Bε(x) ∩ F = ∅. But this contradicts x
being an accumulation point of F . So we must have x ∈ F .
Conversely, suppose F contains all its accumulation points. Then,
if z ∈ F c , z cannot be an accumulation point of F . But for any
ε > 0, z ∈ Bε(z), so ∃ε > 0 for which Bε(z) ∩ F = ∅, i.e.,
Bε(z) ⊂ F c . Hence F c is open, so F is closed.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Theorem (Properties of open sets in a metric space (X , d))

1 The sets X and ∅ are open.
2 Any intersection of a finite number of open sets is open.
3 Any union of an arbitrary collection of open sets is open.
4 The complement of an open set is closed.

Theorem (Properties of closed sets in a metric space (X , d))

1 The sets X and ∅ are closed.
2 Any union of a finite number of closed sets is closed.
3 Any intersection of an arbitrary collection of closed sets is

closed.
4 The complement of a closed set is open.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Set differences of balls

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Topology of metric spaces

Example (Set differences of balls)
Suppose 0 < r1 < r2 and (X , d) is a metric space. If x ∈ X , is
it necessarily true that Br2(x) \ Br1(x) is open or closed?

No, it depends on the metric d . If (X , d) = (Rn, Euclidean) then
Br2(x) \ Br1(x) is neither open nor closed, e.g., in R1,

Br2(x) \ Br1(x) = (x − r2, x + r2) \ (x − r1, x+r1)
= (x − r2, x − r1] ∪ [x + r1, x + r2).

In contrast, if (X , d) = (Rn, discrete) then Br2(x) \ Br1(x) is open since
any set in (X , d) is both open and closed.
In general, if A and B are sets then

A \ B = A ∩ Bc,

so if A and B are both open, and B is also closed, then A \ B is open.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Isolated point)
If x ∈ E ⊆ X in a metric space (X , d) then x is an isolated point
of E if there is a neighbourhood of x for which the only point in E
is x itself, i.e.,

∃ε > 0 )– Bε(x) ∩ E = {x} .

Example
Consider the metric space (X , d) = ([0, 1], standard).
What are the isolated points of (X , d)?
There are no isolated points!

Now suppose (X , d) = ([0, 1], discrete).
What are the isolated points of (X , d)?
All points are isolated!

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Last time. . .
More definitions and examples related to metric topology

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Definition (Closure of a set)
If (X , d) is a metric space and E ⊆ X then the closure of E , denoted
E , is the smallest closed set that contains E .
∴ E is closed, E ⊆ E , and if F is closed and E ⊆ F , then E ⊆ F .

Theorem
x ∈ E ⇐⇒ x is either an element of E or an accumulation point of E .
i.e., x ∈ E ⇐⇒ ∀ε > 0, Bε(x) ∩ E ̸= ∅.

Proof.

( ⇐= ) Suppose ∀ε > 0 Bε(x) ∩ E ̸= ∅. In order to derive a contradiction,
assume x ̸∈ E . Then x ∈ (E)c, which is open, so ∃ε > 0 such that
Bε(x) ⊆ (E)c, i.e., Bε(x) ∩ E = ∅. But E ⊂ E , so Bε(x) ∩ E = ∅. ⇒⇐

( =⇒ ) Suppose x ∈ E and, in order to derive a contradiction, suppose ∃ε > 0
)– Bε(x) ∩ E = ∅. Then E ⊆ (Bε(x))c. Hence E ⊆ (Bε(x))c = (Bε(x))c.
But x ∈ E and x /∈ (Bε(x))c. ⇒⇐. ∴ ∀ε > 0, Bε(x) ∩ E ̸= ∅.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in Rn)

In Rn with the max norm ∥·∥∞, the distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) is

d(x , y) = ∥x − y∥∞ = max{|xi − yi | : 1 ≤ i ≤ n}.

Consider the set E ⊂ Rn, where

E =
{

x ∈ Rn : 0 < xi < 1, ∀i ∈ {1, . . . , n}
}

.

What are the interior E ◦ and closure E of the set E?
n = 1: E = (0, 1), an open interval. E ◦ = (0, 1) = E . E = [0, 1].
n = 2: E = (0, 1) × (0, 1), an open square (an open ball in this metric).
E ◦ = (0, 1)2 = E . E = [0, 1]2.
n > 2: E = (0, 1)n, an open n-cube (an open ball in this metric).
E ◦ = (0, 1)n = E . E = [0, 1]n.
When we imagine an n-cube for n > 3, we are probably thinking about
n = 3 in our minds. But we can easily represent individual points in Rn in
the plane. How?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in Rn)
Suppose x , y ∈ E ⊂ R28, d(x , y) = ∥x − y∥∞.

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

The vertical black line indicates the distance between x and y .
Note: The same picture works for ℓ∞(R), the space of sequences that are
bounded, and in which the norm is defined by sup rather than max.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Metric Spaces IV Topology of metric spaces 48/72

Topology of metric spaces
For the space of continuous functions on a closed interval [a, b], we defined the
Euclidean norm via the standard inner product. We can also define a p-norm
on this space for any p ≥ 1,

∥f ∥p =
(∫ b

a
|f (x)|p dx

)1/p

.

As in finite dimensions, limp→∞ ∥f ∥p = ∥f ∥∞, where

∥f ∥∞ ≡ sup{|f (x)| : a ≤ x ≤ b} = max{|f (x)| : a ≤ x ≤ b}.

Note: In the metric space (C [a, b], d) with d(f , g) = ∥f − g∥∞, convergence
of sequences of “points”, fn

n → ∞−−−−→ f , implies fn
n → ∞

unif−−−−→ f ∈ C [a, b].

Example
In the metric space C([a, b]), with distance given by the sup-norm,

d(f , g) = ∥f − g∥∞ = sup{|f (x) − g(x)| : a ≤ x ≤ b},

let
E =

{
f ∈ C([a, b]) : 0 < f (x) < 1, ∀x ∈ [a, b]

}
.

What are the interior E ◦ and closure E of the set E?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0
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0.4

0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Cubic balls in C [0, 1])
Suppose f , g ∈ E ⊂ C [0, 1], d(f , g) = ∥f − g∥∞.

0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8

1.0

The vertical black line indicates the distance between f and g .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦ and E for E = {f ∈ C([a, b]) : 0 < f (x) < 1 ∀x ∈ [a, b]})

If f ∈ C([a, b]) then f is continuous on [a, b] so, by the Extreme Value
Theorem, f attains its minimum and maximum values on [a, b], say at
u, v ∈ [a, b]. Since f (x) ∈ (0, 1) for all x ∈ [a, b], the extreme values, f (u) and
f (v), must also be in the open interval (0, 1). Therefore,

0 < f (u) ≤ f (x) ≤ f (v) < 1, ∀x ∈ [a, b]. (♡)

Thus, the range of f is [f (u), f (v)] ⊂ (0, 1). There is a gap (a finite interval)
that “insulates” f from the extreme values (0 and 1).

Let ε = min{f (u), 1 − f (v)}. Then ε > 0. Now consider g ∈ Bε(f ) ⊂ C([a, b]).
Then: ∥g − f ∥∞ < ε

=⇒ max{|g(x) − f (x)| : 0 ≤ x ≤ 1} < ε

=⇒ |g(x) − f (x)| < ε ∀x ∈ [0, 1]

=⇒ − ε < g(x) − f (x) < ε ∀x ∈ [0, 1]

=⇒ f (x) − ε < g(x) < f (x) + ε ∀x ∈ [0, 1]

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦ and E for E = {f ∈ C([a, b]) : 0 < f (x) < 1 ∀x ∈ [a, b]})

Now using (♡), we have

0 ≤ f (u)−ε ≤ f (x)−ε < g(x) < f (x)+ε ≤ f (v)+ε ≤ 1, ∀x ∈ [a, b],

from which we conclude that g ∈ E .

Since g was an arbitrary “point” in Bε(f ), it follows that Bε(f ) ⊆ E , so any
f ∈ E is an interior point, so E is open and E ◦ = E .

What about E, the closure of E?

We will show that the closure of E is the set

F = {f ∈ C([a, b]) : 0 ≤ f (x) ≤ 1, ∀x ∈ [a, b]} . (♠)

We will show E ⊆ F and then F ⊆ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦ and E for E = {f ∈ C([a, b]) : 0 < f (x) < 1 ∀x ∈ [a, b]})

(E ⊆ F ) First, consider any sequence (fn)n∈N with fn ∈ E , ∀n ∈ N, and
suppose fn

n → ∞−−−−→ f in the sup-norm, i.e., fn
n → ∞

unif−−−−→ f . Since uniform
convergence implies pointwise convergence, and fn(x) ∈ (0, 1), we must have
0 ≤ f (x) ≤ 1, ∀x ∈ N, and since fn

n → ∞
unif−−−−→ f , we know f ∈ C([a, b]), so f ∈ F .

Since f is a limit point of E and any limit point of E must lie in E , we must
have E ⊆ F .

(F ⊆ E) Suppose f ∈ F , and define the sequence fn ∈ E by

fn(x) =





1 − 1
n , if f (x) > 1 − 1

n ,

f (x), if 1
n ≤ f (x) ≤ 1 − 1

n ,
1
n , if f (x) < 1

n .

By construction, fn
n → ∞

unif−−−−→ f , and so f is a limit point of E so (by the theorem
about closures again) F ⊆ E . (Note: fn → f is illustrated in the next few slides.)

Therefore, F = E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Illustration of fn → f for fn ∈ E , f /∈ E , f ∈ F

f (x) = 1
2
(
1 + sin(4πx)

)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Last time. . .
Last time: interior and closure

I added some graphs illustrating fn → f in the construction
that proved F ⊆ E at the end of the discussion of E ◦ and E
for E ⊂ C [a, b].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Boundary

Definition (Boundary Point)
If E ⊆ X in a metric space (X , d), then x is a boundary point of
E if every neighbourhood of x contains at least one point of E and
at least one point not in E , i.e.,

∀ε > 0 Bε(x) ∩ E ̸= ∅
∧ Bε(x) ∩ (X \ E ) ̸= ∅ .

Definition (Boundary)
If E ⊆ X then the boundary of E , denoted ∂E , is the set of all
boundary points of E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Properties of boundary of E in a metric space (X , d))
For any E ⊂ X

∂E = E \ E ◦;
∂E is a closed set;
E is closed if and only if ∂E ⊆ E .

Excellent exercises. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (E ◦, E , ∂E for E = (0, 1)∞ ⊂ ℓ∞)

In the metric space ℓ∞, i.e., bounded sequences (xn) with distance given by the
sup-norm,

d(x , y) = ∥x − y∥∞ = sup{|xn − yn| : n ∈ N},

let
E =

{
(xn) ∈ ℓ∞ : 0 < xn < 1, ∀n ∈ N

}
.

What are the interior E ◦, closure E , and boundary ∂E of the set E?
Please do poll: Metric spaces: ℓ∞

Consider the following points in ℓ∞.
Are they in E? Are they in E ◦? Are they in E? Are they in ∂E?

( 1
2 , 1

2 , 1
2 , . . .)

(0, 0, 0, . . .)
(0, 1, 0, 1, . . .)

((−1)n)n∈N

( 1
n )n∈N

( 1
n+1 )n∈N

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces
We have previously considered continuous functions f : R → R.
What does it mean for a function to map one metric space to another
continuously?

Definition (Continuous function)

Suppose (M, d) and (N , ρ) are metric spaces, f : M → N , and x ∈ M. The
function f is continuous at x if:

∀ε > 0, ∃δ > 0 )–
(
y ∈ M ∧ d(x , y) < δ

)
=⇒ ρ

(
f (x), f (y)

)
< ε.

If f is continuous at every x ∈ M, we say that f is continuous on M.

Continuity is determined point-by-point, but it is not enough to know f
at a point; we must know how f behaves in a neighborhood of the point.
While (M, d) and (N , ρ) can be any metric spaces, the most common
situations are (N , ρ) = (R, standard) (so f : M → R) and
(M, d) = (N , ρ) (so f : M → M).
If M is a function space (e.g., C [a, b]) then f : M → R is often called a
functional and f : M → M is often called an operator.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces
It is usually helpful to rephrase the definition of continuity more geometrically
in terms of balls. If we write the ball of radius δ in the distance d on M as

Bd
δ (x) = {y ∈ M : d(x , y) < δ},

then
y ∈ M ∧ d(x , y) < δ ⇐⇒ y ∈ Bd

δ (x).
To rephrase the second part of the definition, for any subset E ⊆ M, we write
the image of E by f as

f (E) =
{

f (x) : x ∈ E
}

⊆ N .

Then, we can write “f (x) ∈ B, ∀x ∈ A” as “f (A) ⊆ B”, so the definition of
continuity can be expressed concisely as

∀ε > 0, ∃δ > 0 )– f
(
Bd

δ (x)
)

⊆ Bρ
ε

(
f (x)

)
.

So a function is continuous at x ∈ M if any ball about f (x) ∈ N is the image
of a ball about x ∈ M.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity in metric spaces
As in R, in a general metric space we can express continuity using sequences.

Theorem (Continuity via sequences)

Let (M, d) and (N , ρ) be metric spaces, and suppose f : M → N . Then f
is continuous at x ∈ M if and only if for any sequence (xn)n∈N ⊆ M

xn
n → ∞−−−−→ x =⇒ f (xn) n → ∞−−−−→ f (x).

Thus, f is continuous on M iff, for every convergent sequence (xn),

lim
n→∞

f (xn) = f
(

lim
n→∞

xn
)
.

Instructor: David Earn Mathematics 3A03 Real Analysis I


