26 Integration

27 Integration II

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 26
Integration
Friday 8 November 2019

Integration

Integration

■ "Area of region $R(f, a, b)$ " is actually a very subtle concept.
■ We will only scratch the surface of it.

- Textbook presentation of integral is different (but equivalent).

Our treatment is closer to that in M. Spivak "Calculus" (2008).

Integration

■ Contribution to "area of $R(f, a, b)$ " is positive or negative depending on whether f is positive or negative.

Lower sum

Upper sum

Lower and upper sums

Rigorous development of the integral

Definition (Partition)

Let $a<b$. A partition of the interval $[a, b]$ is a finite collection of points in $[a, b]$, one of which is a, and one of which is b.

We normally label the points in a partition

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b
$$

so the ith subinterval in the partition is

$$
\left[t_{i-1}, t_{i}\right]
$$

Rigorous development of the integral

Definition (Lower and upper sums)

Suppose f is bounded on $[a, b]$ and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$. Let

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \\
M_{i} & =\sup \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}
\end{aligned}
$$

The lower sum of f for P, denoted by $L(f, P)$, is defined as

$$
L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)
$$

The upper sum of f for P, denoted by $U(f, P)$, is defined as

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
$$

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- The lower and upper sums correspond to the total areas of rectangles lying below and above the graph of f in our motivating sketch.
- However, these sums have been defined precisely without any appeal to a concept of "area".
- The requirement that f be bounded on $[a, b]$ is essential in order that all the m_{i} and M_{i} be well-defined.

■ It is also essential that the m_{i} and M_{i} be defined as inf's and sup's (rather than maxima and minima) because f was not assumed continuous.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- Since $m_{i} \leq M_{i}$ for each i, we have

$$
m_{i}\left(t_{i}-t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right) . \quad i=1, \ldots, n .
$$

\therefore For any partition P of $[a, b]$ we have

$$
L(f, P) \leq U(f, P)
$$

because

$$
\begin{aligned}
& L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right), \\
& U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 26: Lower and Upper Sums

- Submit.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

■ More generally, if P_{1} and P_{2} are any two partitions of $[a, b]$, it ought to be true that

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

because $L\left(f, P_{1}\right)$ should be \leq area of $R(f, a, b)$, and $U\left(f, P_{2}\right)$ should be \geq area of $R(f, a, b)$.

■ But "ought to" and "should be" prove nothing, especially since we haven't yet even defined "area of $R(f, a, b)$ ".

- Before we can define "area of $R(f, a, b)$ ", we need to prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$ for any partitions $P_{1}, P_{2} \ldots$

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 27
Integration II
Tuesday 12 November 2019

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 27: Assignment 3 Awaremess

- Submit.

Announcements

■ Assignment 4 was due before class today.

- Assignment 5 is due on

Thursday 21 November 2019 @ 2:25pm via crowdmark.

- Math 3A03 Test \#2

Tuesday 26 November 2019, 5:30-7:00pm, in JHE 264
■ Assignment 6 will be due on Tuesday 3 December 2019 @ 2:25pm via crowdmark.

■ Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am-11:30am Location: MDCL 1105

Rigorous development of the integral

Lemma

If partition $P \subseteq$ partition Q (i.e., if every point of P is also in Q), then $L(f, P) \leq L(f, Q) \quad$ and $\quad U(f, P) \geq U(f, Q)$.

Rigorous development of the integral

Proof of Lemma

As a first step, consider the special case in which the finer partition Q contains only one more point than P :

$$
\begin{aligned}
& P=\left\{t_{0}, \ldots, t_{n}\right\}, \\
& Q=\left\{t_{0}, \ldots, t_{k-1}, u, t_{k}, \ldots, t_{n}\right\},
\end{aligned}
$$

where

$$
a=t_{0}<t_{1}<\cdots<t_{k-1}<u<t_{k}<\cdots<t_{n}=b
$$

Let

$$
\begin{aligned}
m^{\prime} & =\inf \left\{f(x): x \in\left[t_{k-1}, u\right]\right\} \\
m^{\prime \prime} & =\inf \left\{f(x): x \in\left[u, t_{k}\right]\right\}
\end{aligned}
$$

. . . continued. . .

Rigorous development of the integral

Proof of Lemma (cont.)

$$
\begin{aligned}
& \text { Then } \quad L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right), \\
& \text { and } \quad L(f, Q)=\sum_{i=1}^{k-1} m_{i}\left(t_{i}-t_{i-1}\right)+m^{\prime}\left(u-t_{k-1}\right) \\
& +m^{\prime \prime}\left(t_{k}-u\right)+\sum_{i=k+1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) .
\end{aligned}
$$

\therefore To prove $L(f, P) \leq L(f, Q)$, it is enough to show

$$
m_{k}\left(t_{k}-t_{k-1}\right) \leq m^{\prime}\left(u-t_{k-1}\right)+m^{\prime \prime}\left(t_{k}-u\right) .
$$

. . . continued. . .

Rigorous development of the integral

Proof of Lemma (cont.)

Now note that since

$$
\left\{f(x): x \in\left[t_{k-1}, u\right]\right\} \subseteq\left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\}
$$

the RHS might contain some additional smaller numbers, so we must have

$$
\begin{aligned}
m_{k} & =\inf \left\{f(x): x \in\left[t_{k-1}, t_{k}\right]\right\} \\
& \leq \inf \left\{f(x): x \in\left[t_{k-1}, u\right]\right\}=m^{\prime} .
\end{aligned}
$$

Thus, $m_{k} \leq m^{\prime}$, and, similarly, $m_{k} \leq m^{\prime \prime}$.

$$
\begin{aligned}
\therefore \quad m_{k}\left(t_{k}-t_{k-1}\right) & =m_{k}\left(t_{k}-u+u-t_{k-1}\right) \\
& =m_{k}\left(u-t_{k-1}\right)+m_{k}\left(t_{k}-u\right) \\
& \leq m^{\prime}\left(u-t_{k-1}\right)+m^{\prime \prime}\left(t_{k}-u\right),
\end{aligned}
$$

Rigorous development of the integral

Proof of Lemma (cont.)

which proves (in this special case where Q contains only one more point than P) that $L(f, P) \leq L(f, Q)$.

We can now prove the general case by adding one point at a time.
If Q contains ℓ more points than P, define a sequence of partitions

$$
P=P_{0} \subset P_{1} \subset \cdots \subset P_{\ell}=Q
$$

such that P_{j+1} contains exactly one more point that P_{j}. Then

$$
L(f, P)=L\left(f, P_{0}\right) \leq L\left(f, P_{1}\right) \leq \cdots \leq L\left(f, P_{\ell}\right)=L(f, Q)
$$

so $L(f, P) \leq L(f, Q)$.
(Proving $U(f, P) \geq U(f, Q)$ is similar: check!)

Rigorous development of the integral

Theorem (Partition Theorem)

Let P_{1} and P_{2} be any two partitions of $[a, b]$. If f is bounded on [a, b] then

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

Proof.

This is a straightforward consequence of the partition lemma.
Let $P=P_{1} \cup P_{2}$, i.e., the partition obtained by combining all the points of P_{1} and P_{2}.

Then

$$
L\left(f, P_{1}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P_{2}\right) .
$$

Rigorous development of the integral

Important inferences that follow from the partition theorem:

- For any partition P^{\prime}, the upper sum $U\left(f, P^{\prime}\right)$ is an upper bound for the set of all lower sums $L(f, P)$.
$\therefore \quad \sup \{L(f, P): P$ a partition of $[a, b]\} \leq U\left(f, P^{\prime}\right) \quad \forall P^{\prime}$
$\therefore \quad \sup \{L(f, P)\} \leq \inf \{U(f, P)\}$
\therefore For any partition P^{\prime},

$$
L\left(f, P^{\prime}\right) \leq \sup \{L(f, P)\} \leq \inf \{U(f, P)\} \leq U\left(f, P^{\prime}\right)
$$

- If $\sup \{L(f, P)\}=\inf \{U(f, P)\}$ then we can define "area of $R(f, a, b)$ " to be this number.

■ Is it possible that $\sup \{L(f, P)\}<\inf \{U(f, P)\}$?

Rigorous development of the integral

Example

\exists ? $f:[a, b] \rightarrow \mathbb{R}$ such that $\sup \{L(f, P)\}<\inf \{U(f, P)\}$
Let

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \cap[a, b], \\ 0 & x \in \mathbb{Q}^{c} \cap[a, b] .\end{cases}
$$

$$
\text { If } \begin{aligned}
P=\left\{t_{0}, \ldots, t_{n}\right\} \text { then } m_{i}=0 & (\because \\
\text { and } M_{i}=1 & \left.\left(\because t_{i-1}, t_{i}\right] \cap \mathbb{Q}^{c} \neq \varnothing\right), \\
& {\left.\left[t_{i-1}, t_{i}\right] \cap \mathbb{Q} \neq \varnothing\right) . }
\end{aligned}
$$

$\therefore \quad L(f, P)=0 \quad$ and $\quad U(f, P)=b-a \quad$ for any partition P.
$\therefore \quad \sup \{L(f, P)\}=0<b-a=\inf \{U(f, P)\}$.
Can we define "area of $R(f, a, b)$ " for such a weird function? Yes, but not in this course!

Rigorous development of the integral

Definition (Integrable)

A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be integrable on $[a, b]$ if it is bounded on $[a, b]$ and

$$
\begin{aligned}
& \sup \{L(f, P): P \text { a partition of }[a, b]\} \\
& \quad=\inf \{U(f, P): P \text { a partition of }[a, b]\} .
\end{aligned}
$$

In this case, this common number is called the integral of f on [a, b] and is denoted

$$
\int_{a}^{b} f
$$

Note: If f is integrable then for any partition P we have

$$
L(f, P) \leq \int_{a}^{b} f \leq U(f, P)
$$

and $\int_{a}^{b} f$ is the unique number with this property.

Rigorous development of the integral

- Notation:

$$
\int_{a}^{b} f(x) d x \quad \text { means precisely the same as } \quad \int_{a}^{b} f
$$

■ The symbol " $d x$ " has no meaning in isolation just as " $x \rightarrow$ " has no meaning except in $\lim _{x \rightarrow a} f(x)$.

- It is not clear from the definition which functions are integrable.
- The definition of the integral does not itself indicate how to compute the integral of any given integrable function. So far, without a lot more effort we can't say much more than these two things:

1 If $f(x) \equiv c$ then f is integrable on $[a, b]$ and $\int_{a}^{b} f=c \cdot(b-a)$.
2 The weird example function is not integrable.

Rigorous development of the integral

- A function that is integrable according to our definition is usually said to be Riemann integrable, to distinguish this definition from other definitions of integrability.

■ In Math 4A03 you will define "Lebesgue integrable", a more subtle concept that makes it possible to attach meaning to "area of $R(f, a, b)$ " for the weird example function (among others), and to precisely characterize functions that are Riemann integrable.

Rigorous development of the integral

Theorem (Equivalent condition for integrability)

A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$ iff for all $\varepsilon>0$ there is a partition P of $[a, b]$ such that

$$
U(f, P)-L(f, P)<\varepsilon .
$$

Proof.

2016 Assignment 5.

Note: This theorem is just a restatement of the definition of integrability. It is often more convenient to work with $\varepsilon>0$ than with sup's and inf's.

