26 Integration

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 26
Integration
Friday 8 November 2019

Integration

Integration

■ "Area of region $R(f, a, b)$ " is actually a very subtle concept.
■ We will only scratch the surface of it.

- Textbook presentation of integral is different (but equivalent).

Our treatment is closer to that in M. Spivak "Calculus" (2008).

Integration

- Contribution to "area of $R(f, a, b)$ " is positive or negative depending on whether f is positive or negative.

Lower sum

Upper sum

Lower and upper sums

Rigorous development of the integral

Definition (Partition)

Let $a<b$. A partition of the interval $[a, b]$ is a finite collection of points in $[a, b]$, one of which is a, and one of which is b.

We normally label the points in a partition

$$
a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b
$$

so the ith subinterval in the partition is

$$
\left[t_{i-1}, t_{i}\right]
$$

Rigorous development of the integral

Definition (Lower and upper sums)

Suppose f is bounded on $[a, b]$ and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ is a partition of $[a, b]$. Let

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \\
M_{i} & =\sup \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}
\end{aligned}
$$

The lower sum of f for P, denoted by $L(f, P)$, is defined as

$$
L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right)
$$

The upper sum of f for P, denoted by $U(f, P)$, is defined as

$$
U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
$$

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- The lower and upper sums correspond to the total areas of rectangles lying below and above the graph of f in our motivating sketch.
- However, these sums have been defined precisely without any appeal to a concept of "area".
- The requirement that f be bounded on $[a, b]$ is essential in order that all the m_{i} and M_{i} be well-defined.

■ It is also essential that the m_{i} and M_{i} be defined as inf's and sup's (rather than maxima and minima) because f was not assumed continuous.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

- Since $m_{i} \leq M_{i}$ for each i, we have

$$
m_{i}\left(t_{i}-t_{i-1}\right) \leq M_{i}\left(t_{i}-t_{i-1}\right) . \quad i=1, \ldots, n .
$$

\therefore For any partition P of $[a, b]$ we have

$$
L(f, P) \leq U(f, P)
$$

because

$$
\begin{aligned}
& L(f, P)=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) \\
& U(f, P)=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)
\end{aligned}
$$

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 26: Lower and Upper Sums

- Submit.

Rigorous development of the integral

Relationship between motivating sketch and rigorous definition of lower and upper sums:

■ More generally, if P_{1} and P_{2} are any two partitions of $[a, b]$, it ought to be true that

$$
L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)
$$

because $L\left(f, P_{1}\right)$ should be \leq area of $R(f, a, b)$, and $U\left(f, P_{2}\right)$ should be \geq area of $R(f, a, b)$.

■ But "ought to" and "should be" prove nothing, especially since we haven't yet even defined "area of $R(f, a, b)$ ".

- Before we can define "area of $R(f, a, b)$ ", we need to prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$ for any partitions $P_{1}, P_{2} \ldots$

