

Differentiation

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 24 Differentiation Tuesday 5 November 2019

Assignment 4 is posted and is due on Tuesday 12 Nov 2019, 2:25pm, via crowdmark.

Definition (Derivative)

Let f be defined on an interval I and let $x_0 \in I$. The *derivative* of f at x_0 , denoted by $f'(x_0)$, is defined as

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

provided either that this limit exists or is infinite. If $f'(x_0)$ is finite we say that f is **differentiable** at x_0 . If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a **differentiable function**.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is <u>finite</u>.

Example

$$f(x) = x^2$$
. Find $f'(2)$.

$$f'(2) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

<u>Note</u>:

- In the first two limits, we must have $x \neq 2$.
- But in the third limit, we just plug in x = 2.
- Two things are equal, but in one $x \neq 2$ and in the other x = 2.
- Good illustration of why it is important to define the meaning of limits rigorously.

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 24: Differentiable at 0

Submit.

Example

Let f be defined in a neighbourhood I of 0, and suppose $|f(x)| \le x^2$ for all $x \in I$. Is f necessarily differentiable at 0? *e.g.*,

Example (Trapping principle)

Suppose
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$
 Then:

$$\forall x \neq 0: \quad \left| \frac{f(x) - f(0)}{x - 0} \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{x^2 \sin \frac{1}{x^2}}{x} \right| = \left| x \sin \frac{1}{x^2} \right| \le |x|$$

Therefore:

$$|f'(0)| = \left|\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}\right| = \lim_{x \to 0} \left|\frac{f(x) - f(0)}{x - 0}\right| \le \lim_{x \to 0} |x| = 0.$$

 \therefore f is differentiable at 0 and f'(0) = 0.

Definition (One-sided derivatives)

Let *f* be defined on an interval *I* and let $x_0 \in I$. The *right-hand derivative* of *f* at x_0 , denoted by $f'_+(x_0)$, is the limit

$$f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0},$$

provided either that this one-sided limit exists or is infinite. Similarly, the *left-hand derivative* of f at x_0 , denoted by $f'_-(x_0)$, is the limit

$$f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

<u>Note</u>: If $x_0 \in I^\circ$ then f is differentiable at x_0 iff $f'_+(x_0) = f'_-(x_0) \neq \pm \infty$.

Example

Same slope from left and right. Why isn't f differentiable??? $\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^+} f'(x) = \lim_{x\to 0} f'(x) = 1.$ $f'_{-}(0) = f'_{+}(0) = f'(0) = \lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = \infty.$

Higher derivatives: we write

- f'' = (f')' if f' is differentiable;
- $f^{(n+1)} = (f^{(n)})'$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$\frac{df}{dx} = f'(x)$$
$$D = \frac{d}{dx}$$
$$D^n f(x) = \frac{d^n f}{dx} = f^{(n)}(x)$$

Theorem (Differentiable \implies continuous)

If f is defined in a neighbourhood I of x_0 and f is differentiable at x_0 then f is continuous at x_0 .

Proof.

Must show
$$\lim_{x \to x_0} f(x) = f(x_0)$$
, *i.e.*, $\lim_{x \to x_0} (f(x) - f(x_0)) = 0$.
$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0) \right)$$
$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) \times \lim_{x \to x_0} (x - x_0)$$
$$= f'(x_0) \times 0 = 0,$$

where we have used the theorem on the algebra of limits.

Theorem (Algebra of derivatives)

Suppose f and g are defined on an interval I and $x_0 \in I$. If f and g are differentiable at x_0 then f + g and fg are differentiable at x_0 . If, in addition, $g(x_0) \neq 0$ then f/g is differentiable at x_0 . Under these conditions:

1
$$(cf)'(x_0) = cf'(x_0)$$
 for all $c \in \mathbb{R}$;
2 $(f+g)'(x_0) = (f'+g')(x_0)$;
3 $(fg)'(x_0) = (f'g+fg')(x_0)$;
4 $\left(\frac{f}{g}\right)'(x_0) = \left(\frac{gf'-fg'}{g^2}\right)(x_0)$ $(g(x_0) \neq 0)$.

(Textbook (TBB) Theorem 7.7, p. 408)

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_0 and g is defined in a neighbourhood V of $f(x_0)$ such that $f(U) \subseteq V$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$ then the composite function $h = g \circ f$ is differentiable at x_0 and

$$h'(x_0) = (g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

(Textbook (TBB) §7.3.2, p. 411)

TBB provide a very good motivating discussion of this proof, which is quite technical.

Theorem (Derivative at local extrema)

Let $f : (a, b) \to \mathbb{R}$. If x is a maximum or minimum point of f in (a, b), and f is differentiable at x, then f'(x) = 0.

(Textbook (TBB) Theorem 7.18, p. 424)

<u>Note</u>: f need not be differentiable or even continuous at other points.

Last time...

- Definition of the derivative.
- Proved differentiable \implies continuous.
- Discussed algebra of derivatives and chain rule.
- Pictorial argument that derivative is zero at extrema.
- Defined one-sided derivatives
 - Example

The Mean Value Theorem

Theorem (Rolle's theorem)

If f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then there exists $x \in (a, b)$ such that f'(x) = 0.