24 Differentiation

Differentiation

McMaster University

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 24
Differentiation
Tuesday 5 November 2019

Announcements

■ Assignment 4 is posted and is due on Tuesday 12 Nov 2019, 2:25pm, via crowdmark.

The Derivative

The Derivative

Definition (Derivative)

Let f be defined on an interval I and let $x_{0} \in I$. The derivative of f at x_{0}, denoted by $f^{\prime}\left(x_{0}\right)$, is defined as

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

provided either that this limit exists or is infinite. If $f^{\prime}\left(x_{0}\right)$ is finite we say that f is differentiable at x_{0}. If f is differentiable at every point of a set $E \subseteq I$, we say that f is differentiable on E. If E is all of I, we simply say that f is a differentiable function.

Note: "Differentiable" and "a derivative exists" always mean that the derivative is finite.

The Derivative

Example
$f(x)=x^{2}$. Find $f^{\prime}(2)$.

$$
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

Note:
■ In the first two limits, we must have $x \neq 2$.

- But in the third limit, we just plug in $x=2$.
- Two things are equal, but in one $x \neq 2$ and in the other $x=2$.
- Good illustration of why it is important to define the meaning of limits rigorously.

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 24: Differentiable at 0

- Submit.

The Derivative

Example

Let f be defined in a neighbourhood I of 0 , and suppose $|f(x)| \leq x^{2}$ for all $x \in I$. Is f necessarily differentiable at 0 ? e.g.,

The Derivative

Example (Trapping principle)

Suppose $f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}$
Then:
$\forall x \neq 0: \quad\left|\frac{f(x)-f(0)}{x-0}\right|=\left|\frac{f(x)}{x}\right|=\left|\frac{x^{2} \sin \frac{1}{x^{2}}}{x}\right|=\left|x \sin \frac{1}{x^{2}}\right| \leq|x|$
Therefore:
$\left|f^{\prime}(0)\right|=\left|\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}\right|=\lim _{x \rightarrow 0}\left|\frac{f(x)-f(0)}{x-0}\right| \leq \lim _{x \rightarrow 0}|x|=0$.
$\therefore f$ is differentiable at 0 and $f^{\prime}(0)=0$.

The Derivative

Definition (One-sided derivatives)

Let f be defined on an interval I and let $x_{0} \in I$. The right-hand derivative of f at x_{0}, denoted by $f_{+}^{\prime}\left(x_{0}\right)$, is the limit

$$
f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

provided either that this one-sided limit exists or is infinite.
Similarly, the left-hand derivative of f at x_{0}, denoted by $f_{-}^{\prime}\left(x_{0}\right)$, is the limit

$$
f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Note:

If $x_{0} \in I^{\circ}$ then f is differentiable at x_{0} iff $f_{+}^{\prime}\left(x_{0}\right)=f_{-}^{\prime}\left(x_{0}\right) \neq \pm \infty$.

The Derivative

Example

$$
f(x)= \begin{cases}x-1, & x<0 \\ 0, & x=0 \\ x+1, & x>0\end{cases}
$$

■ Same slope from left and right. Why isn't f differentiable???

- $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0} f^{\prime}(x)=1$.
- $f_{-}^{\prime}(0)=f_{+}^{\prime}(0)=f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\infty$.

The Derivative

■ Higher derivatives: we write

- $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ if f^{\prime} is differentiable;
- $f^{(n+1)}=\left(f^{(n)}\right)^{\prime}$ if $f^{(n)}$ is differentiable.
- Other standard notation for derivatives:

$$
\begin{aligned}
\frac{d f}{d x} & =f^{\prime}(x) \\
D & =\frac{d}{d x} \\
D^{n} f(x) & =\frac{d^{n} f}{d x}=f^{(n)}(x)
\end{aligned}
$$

The Derivative

Theorem (Differentiable \Longrightarrow continuous)

If f is defined in a neighbourhood I of x_{0} and f is differentiable at x_{0} then f is continuous at x_{0}.

Proof.

Must show $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$, i.e., $\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right)=0$.

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right) & =\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \times\left(x-x_{0}\right)\right) \\
& =\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right) \times \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \\
& =f^{\prime}\left(x_{0}\right) \times 0=0
\end{aligned}
$$

where we have used the theorem on the algebra of limits.

The Derivative

Theorem (Algebra of derivatives)

Supppose f and g are defined on an interval I and $x_{0} \in I$. If f and g are differentiable at x_{0} then $f+g$ and $g g$ are differentiable at x_{0}. If, in addition, $g\left(x_{0}\right) \neq 0$ then f / g is differentiable at x_{0}. Under these conditions:
$1(c f)^{\prime}\left(x_{0}\right)=c f^{\prime}\left(x_{0}\right)$ for all $c \in \mathbb{R}$;
$2(f+g)^{\prime}\left(x_{0}\right)=\left(f^{\prime}+g^{\prime}\right)\left(x_{0}\right)$;
$3(f g)^{\prime}\left(x_{0}\right)=\left(f^{\prime} g+f g^{\prime}\right)\left(x_{0}\right)$;
$4\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\left(\frac{g f^{\prime}-f g^{\prime}}{g^{2}}\right)\left(x_{0}\right) \quad\left(g\left(x_{0}\right) \neq 0\right)$.
(Textbook (TBB) Theorem 7.7, p. 408)

The Derivative

Theorem (Chain rule)

Suppose f is defined in a neighbourhood U of x_{0} and g is defined in a neighbourhood V of $f\left(x_{0}\right)$ such that $f(U) \subseteq V$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$ then the composite function $h=g \circ f$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right) .
$$

(Textbook (TBB) §7.3.2, p. 411)
TBB provide a very good motivating discussion of this proof, which is quite technical.

The Derivative

Theorem (Derivative at local extrema)

Let $f:(a, b) \rightarrow \mathbb{R}$. If x is a maximum or minimum point of f in (a, b), and f is differentiable at x, then $f^{\prime}(x)=0$.
(Textbook (TBB) Theorem 7.18, p. 424)
Note: f need not be differentiable or even continuous at other points.

Last time. . .

- Definition of the derivative.

■ Proved differentiable \Longrightarrow continuous.
■ Discussed algebra of derivatives and chain rule.
■ Pictorial argument that derivative is zero at extrema.
■ Defined one-sided derivatives

- Example

The Mean Value Theorem

Theorem (Rolle's theorem)
If f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there exists $x \in(a, b)$ such that $f^{\prime}(x)=0$.

