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Announcements

New, exciting topic today. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metric Spaces

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Definition (Absolute Value function)

For any x ∈ R,

|x | def=
{

x if x ≥ 0,

−x if x < 0.

Theorem (Properties of the Absolute Value function)

For all x , y ∈ R:
1 − |x | ≤ x ≤ |x |.
2 |xy | = |x | |y |.
3 |x + y | ≤ |x | + |y |.
4 |x | − |y | ≤ |x − y |.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Definition (Distance function or metric)

The distance between two real numbers x and y is

d(x , y) = |x − y | .

Theorem (Properties of distance function or metric)

1 d(x , y) ≥ 0 distances are positive or zero
2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0
3 d(x , y) = d(y , x) distance is symmetric
4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Note: Any function satisfying these properties can be considered a
“distance” or “metric”.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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The metric structure of R

Given d(x , y) = |x − y |, the properties of the distance function are
equivalent to:

Theorem (Metric properties of the absolute value function)

For all x , y ∈ R:

1 |x | ≥ 0

2 |x | = 0 ⇐⇒ x = 0

3 |x | = |−x |

4 |x + y | ≤ |x | + |y | (the triangle inequality)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Slick proof of the triangle inequality

Theorem (The Triangle Inequality for the standard metric on R)

|x + y | ≤ |x | + |y | for all x , y ∈ R.

Proof.
Let s = sign(x + y). Then

|x + y | = s(x + y) = sx + sy ≤ |x | + |y | ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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A non-standard metric on R

Example (finite distance between every pair of real numbers)

Let f (x) = x
1+x , and define d(x , y) = f (|x − y |) . Prove that

d(x , y) can be interpreted as a distance between x and y because
it satisfies all the properties of a metric.

Proof: The only metric property that is non-trivial to prove is the triangle
inequality. Note that f (x) is an increasing function on [0, ∞), so the
usual triangle inequality, |x − y | ≤ |x − z | + |z − y |, implies

f (|x − y |) ≤ f (|x − z | + |z − y |) = |x − z | + |z − y |
1 + |x − z | + |z − y |

= |x − z |
1 + |x − z | + |z − y |

+ |z − y |
1 + |x − z | + |z − y |

≤ |x − z |
1 + |x − z |

+ |z − y |
1 + |z − y |

= f (|x − z |) + f (|z − y |)

i.e., d(x , y) ≤ d(x , z) + d(z , y).
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Is “= vs ̸=” a metric?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Discrete metric

Example (Discrete metric on R)

Let d(x , y) =
{

0 x = y ,

1 x ̸= y .
Is d a metric on R?

By definition,d(x , y) is non-negative, zero iff x = y , and
symmetric. For the triangle inequality, if x = y then d(x , y) = 0
so the inequality holds for any z . If x ̸= y then d(x , y) = 1, and at
least one of x and y must not equal z , so the inequality says either
1 ≤ 1 or 1 ≤ 2.

Example (Discrete metric on any set X )

The argument that d(x , y) is a metric on R has nothing to do with
R specifically. d(x , y) is a metric on any set X .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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General metric space (X , d)

Definition (Metric space)

A metric space (X , d) is a non-empty set X together with a
distance function (or metric) d : X × X → R satisfying

1 d(x , y) ≥ 0 distances are positive or zero
2 d(x , y) = 0 ⇐⇒ x = y distinct points have distance > 0
3 d(x , y) = d(y , x) distance is symmetric
4 d(x , y) ≤ d(x , z) + d(z , y) the triangle inequality

Much of our analysis of sequences of real numbers and topology of
R generalizes to any metric space. Very often, definitions and
proofs depend only on the the existence of a metric, not on |x |
specifically. Many useful inferences can be made by identifying a
metric on a space of interest.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Examples of metric spaces

Example (Metric spaces (X , d))

X = Q, with the standard metric d(x , y) = |x − y |.
As Q ⊂ R, each condition for d is satisfied in Q.

How different is (Q, d) from (R, d) ?

X = N, with the standard metric d(x , y) = |x − y |.
As N ⊂ R, each condition for d is satisfied in N.

X = R2 with d(x , y) =
√

(x1 − y1)2 + (x2 − y2)2, where we
write the vectors x = (x1, x2), y = (y1, y2) ∈ R2.

X = Rn with d(x , y) =
√∑n

i=1(xi − yi)2, where
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

This metric on Rn is called the Euclidean distance.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metrics from norms
The Euclidean metric on Rn is the (Euclidean) length of the
difference of two vectors. This connection between length and
distance generalizes to any vector space in which length is defined.
Definition (Norm)

A norm on a vector space X is a real-valued function on X such
that if x , y ∈ X and α ∈ R then

1 ∥x∥ ≥ 0 and ∥x∥ = 0 iff x is the zero element in X ;
2 ∥αx∥ = |α| ∥x∥;
3 ∥x + y∥ ≤ ∥x∥ + ∥y∥.

A vector space X equipped with a norm ∥·∥ is said to be a normed
vector space. Any norm ∥·∥ induces a metric d via

d(x , y) = ∥x − y∥ .

Proving that a function is a norm is not necessarily easy. Let’s try for
the Euclidean norm. . . To that end, recall the notion of inner product . . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Definition (Inner product)

An inner product on a vector space V over R is a function
⟨·, ·⟩ : V × V → R

such that for all u, v , w ∈ V and all scalars α ∈ R:
1 ⟨u, v⟩ = ⟨v , u⟩ conjugate symmetry
2 ⟨αu + v , w⟩ = α⟨u, w⟩ + ⟨v , w⟩ linearity in 1st argument
3 ⟨v , v⟩ ≥ 0 with equality iff v = 0 positive definiteness

A vector space equipped with an inner product is called an inner
product space.

Definition (Inner Product Norm)

The norm induced by an inner product ⟨·, ·⟩ is ∥u∥ =
√

⟨u, u⟩.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Theorem (Cauchy-Schwarz inequality)
Let V be a (real) inner product space with inner product ⟨·, ·⟩. For all
vectors u, v ∈ V , we have

|⟨u, v⟩| ≤ ∥u∥ ∥v∥
where ∥u∥ =

√
⟨u, u⟩ is the norm induced by the inner product.

Proof.
The standard proof begins with an idea that probably took someone a
long time to think of: Since ⟨v , v⟩ ≥ 0 for any v ∈ V , for any t ∈ R we
have

0 ≤ ⟨u + tv , u + tv⟩ = ⟨u, u⟩ + t ⟨u, v⟩ + t ⟨v , u⟩ + t2 ⟨v , v⟩
= ⟨u, u⟩ + 2t ⟨u, v⟩ + t2 ⟨v , v⟩

This is a quadratic polynomial in t, which is non-negative for all t ∈ R.
Hence, this quadratic has at most one real root. Consequently, its
discriminant is non-positive, i.e., (2 ⟨u, v⟩)2 − 4 ⟨u, u⟩ ⟨v , v⟩ ≤ 0.

continued. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products

Proof of Cauchy-Schwarz inequality (continued).
Simplifying the non-positive discriminant condition, we have

(⟨u, v⟩)2 ≤ ⟨u, u⟩ ⟨v , v⟩ .

Taking square roots, we have
|⟨u, v⟩| ≤ ∥u∥ ∥v∥ ,

as required.

How might you come up with such a proof?

Perhaps by guessing the result (based on knowing it in R2)
and then working backwards.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Participation deadline for Assignment 4 was at 11:25am today.

Last time. . .
Introduction to metric spaces

Critical ingredient: the triangle inequality

Cauchy-Schwarz inequality
(proved for real inner product spaces)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Norms from inner products
If X is an inner product space, then Cauchy-Schwarz allows us to
prove that the induced norm really is a norm (i.e., satisfies the
triangle inequality). For x , y ∈ X , we have

∥x + y∥2 = ⟨x + y , x + y⟩
= ⟨x , x⟩ + ⟨x , y⟩ + ⟨y , x⟩ + ⟨y , y⟩
= ∥x∥2 + ∥y∥2 + 2 ⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2 ∥x∥ ∥y∥
= (∥x∥ + ∥y∥)2

=⇒ ∥x + y∥ ≤ ∥x∥ + ∥y∥ .

In particular, Rn with the usual “dot product” ⟨x , y⟩ =
∑n

i=1 xiyi
induces the Euclidean norm ∥·∥2, which therefore really is a norm,
and d(x , y) = ∥x − y∥2 really is a metric (the Euclidean distance).
What about other norms induced by inner products?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Other metric spaces induced by inner products
We are accustomed to finite vectors:

x = (x1, x2) ∈ X = R2

x = (x1, x2, x3) ∈ X = R3

x = (x1, x2, . . . , xn) ∈ X = Rn

We can think of a sequence as an infinite vector:

x = (x1, x2, . . .) ∈ X =
{

{xn} : n ∈ N
}

The points in this space (X ) are infinite-dimensional vectors.

We can think of an infinite vector as a function:

xn = f (n) =⇒ (x1, x2, . . .) =
(
f (1), f (2), . . .)

The points in this space are functions: X =
{

f
∣∣ f : N → R

}
.

So we can generalize to other spaces via functions, e.g.,

C [0, 1] = {f : [0, 1] → R
∣∣ f continuous

}
All of the above spaces have a natural inner product, and hence a natural
norm and metric.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Other metric spaces induced by inner products

Inner products that convert the spaces on the previous slide into
(Euclidean) metric spaces:

Rn: ⟨x , y⟩ =
n∑

i=1
xiyi

ℓ2(R): ⟨x , y⟩ =
∞∑

i=1
xiyi

C [a, b]: ⟨f , g⟩ =
∫ b

a
f (x)g(x) dx

Note: ℓ2 includes only square-summable sequences:
∞∑

n=1
x2

n < ∞

Do we need to specify that C [a, b] contains only
square-integrable functions?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Metrics from norms

Example (Taxicab distance)

Taxicab norm on Rn ∥x∥1 =
n∑

i=1
|xi |

In taxicab geometry, the lengths of the red,
blue, green, and yellow paths all equal 12, the
taxicab distance between the opposite corners,
and all four paths are shortest paths. Instead,
in Euclidean geometry, the red, blue, and
yellow paths still have length 12 but the green
path is the unique shortest path, with length
equal to the Euclidean distance between the
opposite corners, 6

√
2 ≈ 8.49.

Image and caption from Wikipedia article on “Taxicab geometry”.

Note: The green path can be followed. All the points of R2 are still present
when we measure distance with the taxicab metric. Any monotonic curve path
that joins the two points can be approximated by an arbitrarily fine grid, and
will have the same length. The metric does not impose a particular grid.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://en.wikipedia.org/wiki/Taxicab_geometry
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Metrics from norms

Example (p-metric)

p-norm on Rn (for p ≥ 1) ∥x∥p =
( n∑

i=1
|xi |p

) 1
p

.

p = 1 is the taxicab norm.
p = 2 is the Euclidean norm.

What happens as p → ∞? For any x ∈ Rn, we have

∥x∥p =
( n∑

i=1
|xi |p

) 1
p = |xk |

( n∑
i=1

∣∣∣∣ xi
xk

∣∣∣∣p ) 1
p (|xk | > |xi | ∀i ̸= k)

= |xk |
(

1 +
∑
i ̸=k

∣∣∣∣ xi
xk

∣∣∣∣p ) 1
p p → ∞−−−→ |xk |

What further work is required if ∄k )– |xk | > |xi | ∀i ̸= k?
Therefore, we define ∥·∥∞ to be

Max norm on Rn ∥x∥∞ = max
1≤i≤n

|xi |

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Metric spaces: Which p-norms are induced?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
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Metrics from norms

Example (p-metric)

Proving that p = 1 and p = ∞ yield norms is a good exercise.

Only p = 2 is induced by an inner product.

That the p-norms for p ̸= 1, 2, ∞ are norms is harder to prove (but
true), so

dp(x , y) = ∥x − y∥p

is a metric on Rn for any p ≥ 1.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

We can generalize the notion of “neighbourhood of a point” to any
metric space:

Definition (Open ball)

Let (X , d) be a metric space. If x0 ∈ X and r > 0 then the open
ball of radius r about x0 is

Br (x0) = {x ∈ X : d(x , x0) < r} .

x0 is said to be the centre of Br (x0).

Note: The notation B(x0, r) is also common (and used in TBB).

Definition (Neighbourhood)

A neighborhood of x is any set that contains an open ball Br (x)
for some r > 0.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (Open balls in metric spaces)

In the metric space (R, standard), i.e., R with d(x , y) = |x − y |,
Br (x) = (x − r , x + r), an open interval of length 2r centred at x .

In Rn with Euclidean metric d(x , y) = ∥x − y∥2, Br (x) has a
spherical boundary (circular boundary if n = 2).

In Rn with a p-norm ∥·∥p, the ball is not spherical. For R2 with the
Taxicab metric d(x , y) = ∥x − y∥1, Br (x) is diamond shaped, and
for R2 with the Max norm ∥·∥∞, Br (x) is a square. We write Bp

r (x)
for balls in the p-norm (“p-balls”).

Bp
r (x)
p = 1
p = 2
p = 16

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Topology of metric spaces

Example (p-norm inequalities and containments)
The following inequalities relate the various p-norms on Rn,

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤ n ∥x∥∞ , and ∥x∥1 ≤
√

n ∥x∥2 .

A good exercise.
Balls in the norm ∥·∥p are often written Bp

r (x). The inequalities above
imply that the following sets are nested:

B2
r/n(x) ⊂ B∞

r/n(x) ⊂ B1
r (x) ⊂ B2

r (x) ⊂ B∞
r (x).

Another good exercise.

Example (Balls in the discrete metric)
For any set X , in the discrete metric the balls are simple, but strange. If
0 < r ≤ 1 then Br (x) = {x}, a single point! If r > 1 then Br (x) = X , the
whole space! You can’t be “close” to a point x unless you are at x itself!

Instructor: David Earn Mathematics 3A03 Real Analysis I


