

Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 22 Metric Spaces Monday 10 March 2025

Announcements

New, exciting topic today...

Metric Spaces

The metric structure of $\mathbb R$

Definition (Absolute Value function)

For any $x \in \mathbb{R}$,

$$|x| \stackrel{\text{def}}{=} \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

Theorem (Properties of the Absolute Value function)

For all $x, y \in \mathbb{R}$:

- $1 |x| \le x \le |x|.$
- **2** |xy| = |x| |y|.
- 3 $|x+y| \le |x|+|y|$.
- 4 $|x| |y| \le |x y|$.

The metric structure of $\mathbb R$

Definition (Distance function or metric)

The distance between two real numbers x and y is

$$d(x,y)=|x-y|.$$

Theorem (Properties of distance function or metric)

1 $d(x,y) \ge 0$ distances are positive or zero2 $d(x,y) = 0 \iff x = y$ distinct points have distance > 03d(x,y) = d(y,x)distance is symmetric4 $d(x,y) \le d(x,z) + d(z,y)$ the triangle inequality

Note: Any function satisfying these properties can be considered a "distance" or "metric".

Given d(x, y) = |x - y|, the properties of the distance function are equivalent to:

Theorem (Metric properties of the absolute value function)

For all $x, y \in \mathbb{R}$:

1 $|x| \ge 0$

 $2 |x| = 0 \iff x = 0$

3 |x| = |-x|

4 $|x + y| \le |x| + |y|$ (the triangle inequality)

Slick proof of the triangle inequality

Theorem (The Triangle Inequality for the standard metric on \mathbb{R})

 $|x + y| \le |x| + |y|$ for all $x, y \in \mathbb{R}$.

Proof.

Let s = sign(x + y). Then

$$|x + y| = s(x + y) = sx + sy \le |x| + |y|$$
,

as required.

A non-standard metric on $\mathbb R$

Example (finite distance between every pair of real numbers)

Let $f(x) = \frac{x}{1+x}$, and define d(x, y) = f(|x - y|). Prove that d(x, y) can be interpreted as a distance between x and y because it satisfies all the properties of a metric.

Proof: The only metric property that is non-trivial to prove is the triangle inequality. Note that f(x) is an increasing function on $[0, \infty)$, so the usual triangle inequality, $|x - y| \le |x - z| + |z - y|$, implies

$$f(|x-y|) \leq f(|x-z| + |z-y|) = \frac{|x-z| + |z-y|}{1+|x-z| + |z-y|}$$

= $\frac{|x-z|}{1+|x-z| + |z-y|} + \frac{|z-y|}{1+|x-z| + |z-y|}$
 $\leq \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|} = f(|x-z|) + f(|z-y|)$

i.e., $d(x, y) \le d(x, z) + d(z, y)$.

Poll

Go to

https://www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Metric spaces: Is "= vs \neq " a metric?

Submit.

Example (Discrete metric on \mathbb{R})

Let
$$d(x,y) = \begin{cases} 0 & x = y, \\ 1 & x \neq y. \end{cases}$$

Is *d* a metric on \mathbb{R} ?

By definition, d(x, y) is non-negative, zero iff x = y, and symmetric. For the triangle inequality, if x = y then d(x, y) = 0so the inequality holds for any z. If $x \neq y$ then d(x, y) = 1, and at least one of x and y must not equal z, so the inequality says either $1 \leq 1$ or $1 \leq 2$.

Example (Discrete metric on any set X)

The argument that d(x, y) is a metric on \mathbb{R} has nothing to do with \mathbb{R} specifically. d(x, y) is a metric on any set X.

Definition (Metric space)

A *metric space* (X, d) is a non-empty set X together with a distance function (or *metric*) $d : X \times X \to \mathbb{R}$ satisfying

1 $d(x,y) \ge 0$ distances are positive or zero2 $d(x,y) = 0 \iff x = y$ distinct points have distance > 03 d(x,y) = d(y,x)distance is symmetric4 $d(x,y) \le d(x,z) + d(z,y)$ the triangle inequality

Much of our analysis of sequences of real numbers and topology of \mathbb{R} generalizes to any metric space. Very often, definitions and proofs depend only on the the existence of a metric, not on |x| specifically. Many useful inferences can be made by identifying a metric on a space of interest.

Example (Metric spaces (X, d))

- X = Q, with the standard metric d(x, y) = |x y|.
 As Q ⊂ ℝ, each condition for d is satisfied in Q.
 How different is (Q, d) from (ℝ, d) ?
- $X = \mathbb{N}$, with the standard metric d(x, y) = |x y|. As $\mathbb{N} \subset \mathbb{R}$, each condition for *d* is satisfied in \mathbb{N} .

•
$$X = \mathbb{R}^2$$
 with $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$, where we write the vectors $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$.

•
$$X = \mathbb{R}^n$$
 with $d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$, where $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$.

This metric on \mathbb{R}^n is called the *Euclidean distance*.

Metrics from norms

The Euclidean metric on \mathbb{R}^n is the (Euclidean) length of the difference of two vectors. This connection between length and distance generalizes to any vector space in which *length* is defined.

Definition (Norm)

A *norm* on a vector space X is a real-valued function on X such that if $x, y \in X$ and $\alpha \in \mathbb{R}$ then

1 $||x|| \ge 0$ and ||x|| = 0 iff x is the zero element in X;

2
$$\|\alpha x\| = |\alpha| \|x\|;$$

3
$$||x + y|| \le ||x|| + ||y||.$$

A vector space X equipped with a norm $\|\cdot\|$ is said to be a *normed* vector space. Any norm $\|\cdot\|$ induces a metric d via

$$d(x,y) = \|x-y\|.$$

Proving that a function is a norm is not necessarily easy. Let's try for the Euclidean norm...To that end, recall the notion of inner product ...

Norms from inner products

Definition (Inner product)

An *inner product* on a vector space V over \mathbb{R} is a function

$$\langle \cdot, \cdot \rangle : V imes V o \mathbb{R}$$

such that for all $u, v, w \in V$ and all scalars $\alpha \in \mathbb{R}$:

1 $\langle u, v \rangle = \overline{\langle v, u \rangle}$ conjugate symmetry2 $\langle \alpha u + v, w \rangle = \alpha \langle u, w \rangle + \langle v, w \rangle$ linearity in 1st argument3 $\langle v, v \rangle > 0$ with equality iff v = 0positive definiteness

A vector space equipped with an inner product is called an *inner product space*.

Definition (Inner Product Norm)

The norm induced by an inner product $\langle \cdot, \cdot \rangle$ is $||u|| = \sqrt{\langle u, u \rangle}$.

Norms from inner products

Theorem (Cauchy-Schwarz inequality)

Let V be a (real) inner product space with inner product $\langle\cdot,\cdot\rangle$. For all vectors u, v \in V, we have

$$|\langle u,v\rangle| \leq ||u|| ||v||$$

where $||u|| = \sqrt{\langle u, u \rangle}$ is the norm induced by the inner product.

Proof.

The standard proof begins with an idea that probably took someone a long time to think of: Since $\langle v, v \rangle \ge 0$ for any $v \in V$, for any $t \in \mathbb{R}$ we have

$$0 \leq \langle u + tv, u + tv \rangle = \langle u, u \rangle + t \langle u, v \rangle + t \langle v, u \rangle + t^{2} \langle v, v \rangle$$
$$= \langle u, u \rangle + 2t \langle u, v \rangle + t^{2} \langle v, v \rangle$$

This is a quadratic polynomial in t, which is non-negative for all $t \in \mathbb{R}$. Hence, this quadratic has at most one real root. Consequently, its discriminant is non-positive, *i.e.*, $(2 \langle u, v \rangle)^2 - 4 \langle u, u \rangle \langle v, v \rangle \leq 0$.

continued...

Norms from inner products

Proof of Cauchy-Schwarz inequality (continued).

Simplifying the non-positive discriminant condition, we have

$$(\langle u, v \rangle)^2 \leq \langle u, u \rangle \langle v, v \rangle \; .$$

Taking square roots, we have

 $|\langle u,v\rangle| \leq ||u|| ||v|| ,$

as required.

How might you come up with such a proof?

Perhaps by guessing the result (based on knowing it in \mathbb{R}^2) and then working backwards.