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Announcements

Assignment 3 is posted (and complete).
Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)
Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
Location: MDCL 1105

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
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Continuous Functions

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 18
Continuity

Friday 11 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity 5/61

Limits of functions
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Definition (Limit of a function on an interval (a, b))
Let a < x0 < b and f : (a, b)→ R. Then f is said to approach
the limit L as x approaches x0, often written “f (x)→ L as
x → x0” or

lim
x→x0

f (x) = L ,

iff for all ε > 0 there exists δ > 0 such that if 0 < |x − x0| < δ
then |f (x)− L| < ε.

Shorthand version:
∀ε > 0 ∃δ > 0 )– 0 < |x − x0| < δ =⇒ |f (x)− L| < ε.
limitdefinterval

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

The function f need not be defined on an entire interval.
It is enough for f to be defined on a set with at least one
accumulation point.

Definition (Limit of a function with domain E ⊆ R)
Let E ⊆ R and f : E → R. Suppose x0 is a point of accumulation
of E . Then f is said to approach the limit L as x approaches
x0, i.e.,

lim
x→x0

f (x) = L ,

iff for all ε > 0 there exists δ > 0 such that if x ∈ E , x 6= x0, and
|x − x0| < δ then |f (x)− L| < ε.

Shorthand version:
∀ε > 0 ∃δ > 0 )–

(
x ∈ E ∧ 0 < |x − x0| < δ

)
=⇒ |f (x)− L| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Example
Prove directly from the definition of a limit that

lim
x→3

(2x + 1) = 7 .

Proof that 2x + 1→ 7 as x → 3.
We must show that ∀ε > 0 ∃δ > 0 such that 0 < |x − 3| < δ =⇒
|(2x + 1)− 7| < ε. Given ε, to determine how to choose δ, note that

|(2x + 1)− 7| < ε ⇐⇒ |2x − 6| < ε ⇐⇒ 2 |x − 3| < ε ⇐⇒ |x − 3| < ε

2
Therefore, given ε > 0, let δ = ε

2 . Then |x − 3| < δ =⇒
|(2x + 1)− 7| = |2x − 6| = 2 |x − 3| < 2 ε

2 = ε, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Example
Prove directly from the definition of a limit that

lim
x→2

x2 = 4 .

(Solution on next slide)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Proof that x2 → 4 as x → 2.
We must show that ∀ε > 0 ∃δ > 0 such that 0 < |x − 2| < δ =⇒∣∣x2 − 4

∣∣ < ε. Given ε, to determine how to choose δ, note that∣∣∣x2 − 4
∣∣∣ < ε ⇐⇒ |(x − 2)(x + 2)| < ε ⇐⇒ |x − 2| |x + 2| < ε.

We can make |x − 2| as small as we like by choosing δ sufficiently
small. Moreover, if x is close to 2 then x + 2 will be close to 4, so
we should be able to ensure that |x + 2| < 5. To see how, note
that

|x + 2| < 5 ⇐⇒ − 5 < x + 2 < 5 ⇐⇒ − 9 < x − 2 < 1
⇐= − 1 < x − 2 < 1 ⇐⇒ |x − 2| < 1 .

Therefore, given ε > 0, let δ = min(1, ε5). Then∣∣x2 − 4
∣∣ = |(x − 2)(x + 2)| = |x − 2| |x + 2| < ε

55 = ε.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 18: ε-δ definition of limit

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Limits of functions

Rather than the ε-δ definition, we can exploit our experience with
sequences to define “f (x)→ L as x → x0”.

Definition (Limit of a function via sequences)
Let E ⊆ R and f : E → R. Suppose x0 is a point of accumulation
of E . Then

lim
x→x0

f (x) = L

iff for every sequence {en} of points in E \ {x0},

lim
n→∞

en = x0 =⇒ lim
n→∞

f (en) = L .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 19
Continuity II

Tuesday 22 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 was due today at 2:25pm via crowdmark.
Solutions will be posted today.
Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)
An incomplete version of Assignment 4 is posted on the course
web site. Due 5 November 2019 at 2:25pm via crowdmark.
BUT you should do the posted questions before Test #1
(check again later in the week and over the weekend for
additional posted questions).
Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
Location: MDCL 1105

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Last time. . .

ε-δ definition of limit of a function

Sequence definition of limit of a function

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 19: ε-δ vs sequence definition of a
limit

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php


Continuity II 17/61

Limits of functions

Lemma (Equivalence of limit definitions)
The ε-δ definition of limits and the sequence definition of limits are
equivalent.

(proof on next two slides)

Note: The definition of a limit via sequences is sometimes easier to
use than the ε-δ definition.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Equivalence of ε-δ definition and sequence
definition of limit.

Proof (ε-δ =⇒ seq).
Suppose the ε-δ definition holds and {en} is a sequence in E \ {x0}
that converges to x0. Given ε > 0, there exists δ > 0 such that if
0 < |x − x0| < δ then |f (x)− L| < ε. But since en → x0, given
δ > 0, there exists N ∈ N such that, for all n ≥ N, |en − x0| < δ.
This means that if n ≥ N then x = en satisfies 0 < |x − x0| < δ,
implying that we can put x = en in the statement |f (x)− L| < ε.
Hence, for all n ≥ N, |f (en)− L| < ε. Thus,

en → x0 =⇒ f (en)→ L ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Equivalence of ε-δ definition and sequence
definition of limit.

Proof (seq =⇒ ε-δ) via contrapositive.
Suppose that as x → x0, f (x) 6→ L according to the ε-δ definition.
We must show that f (x) 6→ L according to the sequence definition.

Since the ε-δ criterion does not hold, ∃ε > 0 such that ∀δ > 0
there is some xδ ∈ E for which 0 < |xδ − x0| < δ and yet
|f (xδ)− L| ≥ ε. This is true, in particular, for δ = 1/n, where n is
any natural number. Thus, ∃ε > 0 such that: ∀n ∈ N, there exists
xn ∈ E such that 0 < |xn − x0| < 1/n and yet |f (xn)− L| ≥ ε.
This demonstrates that there is a sequence {xn} in E \ {x0} for
which xn → x0 and yet f (xn) 6→ L. Hence, f (x) 6→ L as x → x0
according to the sequence criterion, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits

Definition (Right-Hand Limit)
Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) = L

if for every ε > 0 there is a δ > 0 so that

|f (x)− L| < ε

whenever x0 < x < x0 + δ and x ∈ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits

One-sided limits can also be expressed in terms of sequence
convergence.

Definition (Right-Hand Limit – sequence version)
Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) = L

if for every decreasing sequence {en} of points of E with en > x0
and en → x0 as n→∞,

lim
n→∞

f (en) = L .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Infinite limits

Definition (Right-Hand Infinite Limit)
Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) =∞

if for every M > 0 there is a δ > 0 such that f (x) ≥ M whenever
x0 < x < x0 + δ and x ∈ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of limits

There are theorems for limits of functions of a real variable that
correspond (and have similar proofs) to the various results we
proved for limits of sequences:

Uniqueness of limits
Algebra of limits
Order properties of limits
Limits of absolute values
Limits of Max/Min

See Chapter 5 of textbook for details.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of compositions of functions

When is lim
x→x0

g
(
f (x)

)
= g

(
lim

x→x0
f (x)

)
?

Theorem (Limit of composition)
Suppose

lim
x→x0

f (x) = L .

If g is a function defined in a neighborhood of the point L and

lim
z→L

g(z) = g(L)

then
lim

x→x0
g
(
f (x)

)
= g

(
lim

x→x0
f (x)

)
= g(L) .

(Textbook (TBB) §5.2.5)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of compositions of functions – more generally
Note: It is a little more complicated to generalize the statement of this
theorem so as to minimize the set on which g must be defined but the proof is
no more difficult.

Theorem (Limit of composition)
Let A,B ⊆ R, f : A→ R, f (A) ⊆ B, and g : B → R. Suppose x0 is an
accumulation point of A and

lim
x→x0

f (x) = L .

Suppose further that g is defined at L. If L is an accumulation point of B
and

lim
z→L

g(z) = g(L) ,

or ∃δ > 0 such that f (x) = L for all x ∈ (x0 − δ, x0 + δ) ∩ A, then

lim
x→x0

g
(
f (x)

)
= g

(
lim

x→x0
f (x)

)
= g(L) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 20
Continuity III

Thursday 24 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity
Intuitively, a function f is continuous if you can draw its graph
without lifting your pencil from the paper. . .
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity
and discontinuous otherwise. . .
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity

In order to develop a rigorous foundation for the theory of
functions, we need to be more precise about what we mean by
“continuous”.

The main challenge is to define “continuity” in a way that works
consistently on sets other than intervals (and generalizes to spaces
that are more abstract than R).

We will define:
continuity at a single point;
continuity on an open interval;
continuity on a closed interval;
continuity on more general sets.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise continuity

Definition (Continuous at an interior point of the domain of f )
If the function f is defined in a neighbourhood of the point x0 then
we say f is continuous at x0 iff

lim
x→x0

f (x) = f (x0) .

This definition works more generally provided x0 is a point of
accumulation of the domain of f (notation: dom(f ) ).

We will also consider a function to be continuous at any isolated
point in its domain.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise continuity

Definition (Continuous at any x0 ∈ dom(f ) – limit version)
If x0 ∈ dom(f ) then f is continuous at x0 iff x0 is either an
isolated point of dom(f ) or x0 is an accumulation point of
dom(f ) and limx→x0 f (x) = f (x0).

Definition (Continuous at any x0 ∈ dom(f ) – sequence version)
If x0 ∈ dom(f ) then f is continuous at x0 iff for any sequence
{xn} in dom(f ), if xn → x0 then f (xn)→ f (x0).

Definition (Continuous at any x0 ∈ dom(f ) – ε-δ version)
If x0 ∈ dom(f ) then f is continuous at x0 iff for any ε > 0 there
exists δ > 0 such that if x ∈ dom(f ) and |x − x0| < δ then
|f (x)− f (x0)| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity III 33/61

Pointwise continuity

Example
Suppose f : A→ R. In which cases is f continuous on A?

A = (0, 1) ∪ {2}, f (x) = x ;
A = {0} ∪ { 1

n : n ∈ N} ∪ {2}, f (x) = x ;
A = { 1

n : n ∈ N} ∪ {2}, f (x) = whatever you like.

Example
Is it possible for a function f to be discontinuous at every point of
R and yet for its restriction to the rational numbers (f

∣∣
Q) to be

continuous at every point in Q?

Extra Challenge Problem:
Prove or disprove: There is a function f : R→ R that is
continuous at every irrational number and discontinuous at every
rational number.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity on an interval

Definition (Continuous on an open interval)
The function f is said to be continuous on (a, b) iff

lim
x→x0

f (x) = f (x0) for all x0 ∈ (a, b) .

Definition (Continuous on a closed interval)
The function f is said to be continuous on [a, b] iff it is
continuous on the open interval (a, b), and

lim
x→a+

f (x) = f (a) and lim
x→b−

f (x) = f (b) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity on an arbitrary set E ⊆ R

Definition (Continuous on a set E )
The function f is said to be continuous on E iff f is continuous
at each point x ∈ E .

Example

Every polynomial is continuous on R.
Every rational function is continuous on its domain (i.e.,
avoiding points where the denominator is zero).

These facts are painful to prove directly from the definition.
But they follow easily if from the theorem on the algebra of limits.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity of compositions of functions

Theorem (Continuity of f ◦ g at a point)
If g is continuous at x0 and f is continuous at g(x0) then f ◦ g is
continuous at x0.

Consequently, if g is continuous at x0 and f is continuous at g(x0)
then

lim
x→x0

f
(
g(x)

)
= f

(
lim

x→x0
g(x)

)
.

Theorem (Continuity of f ◦ g on a set)
If g is continuous on A ⊆ R and f is continuous on g(A) then
f ◦ g is continuous on A.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity of compositions of functions

Example
Use the theorem on continuity of f ◦ g , and the theorem on the
algebra of limits, to prove that

1 the polynomial x8 + x3 + 2 is continuous on R;

2 the rational function x2 + 2
x2 − 2 is continuous on R \ {−

√
2,
√

2}.

3 the function
√

x2 + 2
x2 − 2 is continuous on its domain.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity IV 38/61

Mathematics
and Statistics∫
M

dω =
∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 21
Continuity IV

Friday 25 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)

An incomplete version of Assignment 4 is posted on the course
web site. Due 5 November 2019 at 2:25pm via crowdmark.
BUT you should do the posted questions before Test #1
(check again over the weekend for additional posted
questions).

Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
Location: MDCL 1105

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://library.mcmaster.ca/cct/class-dir/jhe-264
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Last time. . .

Continuity at a point and on a set.

Continuity of compositions.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

In the ε-δ definition of continuity, the δ that must exist depends
on ε AND on the point x0, i.e., δ = δ(f , ε, x0).

Definition (Uniformly continuous)
If f : A→ R then f is said to be uniformly continuous on A iff
for every ε > 0 there exists δ > 0 such that if x , y ∈ A and
|x − y | < δ then |f (x)− f (y)| < ε.

Note: This is a stronger form of continuity: Given any ε > 0,
there is a single δ > 0 that works for the entire set A.
(δ still depends on f and ε.)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Example
Prove that f (x) = 2x + 1 is uniformly continuous on R.

Proof.
We must show that ∀ε > 0, ∃δ > 0 such that if x , y ∈ R and |x − y | < δ
then |(2x + 1)− (2y + 1)| < ε. But note that

|(2x + 1)− (2y + 1)| = |2x − 2y | = 2 |x − y | ,

so if we choose δ = ε/2 then we have

|(2x + 1)− (2y + 1)| = 2 |x − y | < 2 · ε2 = ε ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Example
Prove that f (x) = √x is uniformly continuous on [ 1

8 , 1].

Proof.
We must show that ∀ε > 0, ∃δ > 0 such that if x , y ∈ [ 1

8 , 1] and
|x − y | < δ then

∣∣√x −√y
∣∣ < ε. But note that

∣∣√x −√y
∣∣ =

∣∣∣∣(√x −√y
)√x +√y√x +√y

∣∣∣∣
=
∣∣∣∣ x − y√x +√y

∣∣∣∣ ≤
∣∣∣∣∣∣ x − y√

1
8 +

√
1
8

∣∣∣∣∣∣ =
∣∣∣∣∣x − y

1√
2

∣∣∣∣∣ =
√

2 |x − y | ,

so taking δ = ε/
√

2, we have
∣∣√x −√y

∣∣ < √2 · ε√
2 = ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Example
Is f (x) = √x uniformly continuous on [0, 1]?

Note: The proof on the previous slide fails if the lower limit is 0,
but that doesn’t establish that the function is not uniformly
continuous.
Either we must find a different proof that works for the whole
interval [0, 1], or we must show that ∃ε > 0 such that ∀δ > 0,
∃x , y ∈ [0, 1] such that |x − y | < δ and yet

∣∣√x −√y
∣∣ ≥ ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 21: Is f (x) = √x uniformly continuous
on [0, 1]?

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Uniform continuity

Theorem (Cont. on a closed interval =⇒ unif. cont.)
If f : [a, b]→ R is continuous then f is uniformly continuous.

(Textbook (TBB) Theorem 5.48, p. 323)

Theorem (Unif. cont. on a bounded interval =⇒ bounded)
If f is uniformly continuous on a bounded interval I then f is
bounded on I.

Corollary (Continuous on a closed interval =⇒ bounded)
If f : [a, b]→ R is continuous then f is bounded.

Proof.
Combine the above two theorems.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity V

Thursday 31 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Post-Test #1

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Uniform continuity

Theorem (Cont. on a closed interval =⇒ unif. cont.)
If f : [a, b]→ R is continuous then f is uniformly continuous.

(Textbook (TBB) Theorem 5.48, p. 323)

Theorem (Unif. cont. on a bounded interval =⇒ bounded)
If f is uniformly continuous on a bounded interval I then f is
bounded on I.

Corollary (Continuous on a closed interval =⇒ bounded)
If f : [a, b]→ R is continuous then f is bounded.

Proof.
Combine the above two theorems.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity

Theorem (Unif. cont. on a bounded interval =⇒ bounded)
If f is uniformly continuous on a bounded interval I then f is
bounded on I.

We will come back to proof, but just use the result today.
Clean proof.
Suppose f is uniformly continuous on the interval I with endpoints
a, b (where a < b). Then, given ε > 0 we can find δ > 0 such that
if x , y ∈ I and |x − y | < δ then |f (x)− f (y)| < ε.
Moreover, given any δ > 0 and any c > 0, we can find n ∈ N such
that 0 < c

n < δ.

Choose n ∈ N such that if x , y ∈ I and |x − y | < 2
(b−a

n
)

then
|f (x)− f (y)| < 1.

Continued. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform continuity
Clean proof (continued).
Divide I into n subintervals with endpoints

xi = a + i
(b − a

n
)
, i = 0, 1, . . . , n.

For 0 ≤ i ≤ n − 1, define Ii = [xi , xi+1] ∩ I (we intersect with I in
case a /∈ I or b /∈ I), and note that ∀x , y ∈ Ii we have
|x − y | ≤ b−a

n < 2
(b−a

n
)

and hence |f (x)− f (y)| < 1 ∀x , y ∈ Ii .
Let x i = (xi + xi+1)/2 (the midpoint of interval Ii ). Then, in
particular, we have |f (x)− f (x i )| < 1 ∀x ∈ Ii , i.e.,

f (x i )− 1 < f (x) < f (x i ) + 1 ∀x ∈ Ii .

Thus, f is bounded on Ii and therefore has a LUB and GLB on Ii .
Continued. . .
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Uniform continuity

Clean proof (continued).
Therefore, for i = 0, 1, . . . , n − 1, define

mi = inf{f (x) : x ∈ Ii} ,
Mi = sup{f (x) : x ∈ Ii} ,

and let
m = min{mi : i = 0, 1, . . . , n − 1} ,
M = max{Mi : i = 0, 1, . . . , n − 1} .

Then
m ≤ f (x) ≤ M ∀x ∈ I =

n−1⋃
i=1

Ii ,

i.e., f is bounded on the entire interval I.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity V 53/61

Uniform continuity

Although the corollary was stated in terms of a closed interval
[a, b], the proof establishes something more general.

Theorem
A continuous function on a compact set is uniformly continuous.

The converse is also true:
Theorem
If every continuous function on a set E is uniformly continuous
then E is compact.

Recall that compactness is associated with global properties (as
opposed to local properties). Uniform continuity is a global
property in that a single δ is sufficient for an entire set.
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Extreme Value Theorem

a

max

b

min

Theorem (Extreme value theorem)
A continuous function on a closed interval [a, b] has a maximum
and minimum value on [a, b].
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Extreme Value Theorem

More generally:

Theorem
A continuous function on a compact set has a maximum and
minimum value.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Extreme Value Theorem

Theorem
A continuous function on a compact set has a maximum and
minimum value.

Proof (by contradiction).
Since f is continuous on the compact set [a, b], it is bounded on
[a, b]. This means that the range of f , i.e., the set

f ([a, b]) def= {f (x) : x ∈ [a, b]}

is bounded. This set is not ∅, so it has a LUB α. Since α ≥ f (x)
for x ∈ [a, b], it suffices to show that α = f (y) for some y ∈ [a, b].

Suppose instead that α 6= f (y) for any y ∈ [a, b], i.e., α > f (y) for
all y ∈ [a, b]. Then the function g defined by . . .
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Extreme Value Theorem

Proof of Extreme Value Theorem (continued).

g(x) = 1
α− f (x) , x ∈ [a, b],

is positive and continuous on [a, b], since the denominator of the
RHS is always positive. On the other hand, α is the LUB of
f ([a, b]); this means that

∀ε > 0 ∃x ∈ [a, b] )– α− f (x) < ε .

Since α− f (x) > 0, this, in turn, means that

∀ε > 0 ∃x ∈ [a, b] )– g(x) > 1
ε
.

But this means that g is not bounded on [a, b], . . .
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Extreme Value Theorem

Proof of Extreme Value Theorem (continued).
contradicting the theorem that a continuous function on a
compact set is bounded. ⇒⇐

Therefore, α = f (y) for some y ∈ [a, b],
i.e., f has a maximum on [a, b].

A similar argument shows that f has a minimum on [a, b].
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Uniform continuity is stronger than continuity

Theorem (Uniform continuity =⇒ continuity)
Suppose f : E → R is uniformly continuous. Then f is continuous.

Proof.
f uniformly continuous means ∀ε > 0 ∃δ > 0 such that if x , y ∈ E
and |x − y | < δ then |f (x)− f (y)| < ε. If we fix any point y ∈ E
then this is the definition of continuity at y , i.e., f is continuous at
each y ∈ E .

Note: Converse is false!

Example (Continuous 6=⇒ uniformly continuous)
f (x) = 1/x on is continuous on (0, 1) but not uniformly
continuous on (0, 1).
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Key theorems about uniform continuity

1 Uniformly continuous on a bounded interval =⇒ bounded
Proof skipped but in slides.

2 Uniformly continuous on a compact set =⇒ bounded
Generalization of 1 in case of closed interval [a, b].

3 Continuous on a compact set =⇒ uniformly continuous
Mentioned for a closed interval [a, b] and a general compact
set.

4 Continuous on a compact set =⇒ bounded
Combine 3 with 2 .

Note: Continuity is a local property, whereas uniform
continuity is a global property.
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Key theorems relating continuity and compactness

1 Continuous on a compact set =⇒ uniformly continuous.
Also stated on previous slide.

2 Continuous image of a compact set is compact.
Not discussed in class but a great exercise and important
result.

3 Extreme Value Theorem
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