

19 Continuity II

20 Continuity III

- Assignment 3 is posted (and complete).
 Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
- Math 3A03 Test #1 Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

Continuous Functions

Mathematics and Statistics

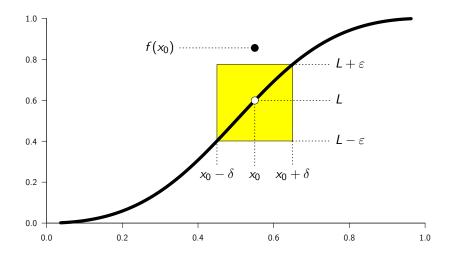
$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 18 Continuity Friday 11 October 2019 Continuity

Limits of functions



Definition (Limit of a function on an interval (a, b))

Let $a < x_0 < b$ and $f : (a, b) \to \mathbb{R}$. Then f is said to *approach the limit* L *as* \times *approaches* x_0 , often written " $f(x) \to L$ as $x \to x_0$ " or

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \) \ 0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon.$$

limitdefinterval

The function f need not be defined on an entire interval. It is enough for f to be defined on a set with at least one accumulation point.

Definition (Limit of a function with domain $E \subseteq \mathbb{R}$)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then f is said to *approach the limit* L *as* \times *approaches* x_0 , *i.e.*,

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$, $x \neq x_0$, and $|x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \end{pmatrix} \ (x \in E \ \land \ 0 < |x - x_0| < \delta) \implies |f(x) - L| < \varepsilon.$

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 3}(2x+1)=7.$$

Proof that $2x + 1 \rightarrow 7$ as $x \rightarrow 3$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x - 3| < \delta \implies$ $|(2x + 1) - 7| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$|(2x+1)-7| < \varepsilon \iff |2x-6| < \varepsilon \iff 2|x-3| < \varepsilon \iff |x-3| < \frac{\varepsilon}{2}$$

Therefore, given $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{2}$. Then $|x - 3| < \delta \implies$ $|(2x + 1) - 7| = |2x - 6| = 2|x - 3| < 2\frac{\varepsilon}{2} = \varepsilon$, as required.

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 2} x^2 = 4.$$

(Solution on next slide)

Proof that $x^2 \rightarrow 4$ as $x \rightarrow 2$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x - 2| < \delta \implies |x^2 - 4| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$\left|x^2-4\right|$$

We can make |x - 2| as small as we like by choosing δ sufficiently small. Moreover, if x is close to 2 then x + 2 will be close to 4, so we should be able to ensure that |x + 2| < 5. To see how, note that

$$\begin{aligned} |x+2| < 5 \iff -5 < x+2 < 5 \iff -9 < x-2 < 1 \\ \iff -1 < x-2 < 1 \iff |x-2| < 1. \end{aligned}$$

Therefore, given $\varepsilon > 0$, let $\delta = \min(1, \frac{\varepsilon}{5})$. Then $|x^2 - 4| = |(x - 2)(x + 2)| = |x - 2| |x + 2| < \frac{\varepsilon}{5}5 = \varepsilon$. Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 18: ε - δ definition of limit

Submit.

Rather than the ε - δ definition, we can exploit our experience with sequences to define " $f(x) \to L$ as $x \to x_0$ ".

Definition (Limit of a function via sequences)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then

$$\lim_{x\to x_0}f(x)=L$$

iff for every sequence $\{e_n\}$ of points in $E \setminus \{x_0\}$,

$$\lim_{n\to\infty} e_n = x_0 \implies \lim_{n\to\infty} f(e_n) = L.$$

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 19 Continuity II Tuesday 22 October 2019

- Assignment 3 was due today at 2:25pm via crowdmark. Solutions will be posted today.
- Math 3A03 Test #1

Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)

- An incomplete version of Assignment 4 is posted on the course web site. Due 5 November 2019 at 2:25pm via crowdmark. BUT you should do the posted questions before Test #1 (check again later in the week and over the weekend for additional posted questions).
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

• ε - δ definition of limit of a function

Sequence definition of limit of a function

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 19: ε - δ vs sequence definition of a limit

Lemma (Equivalence of limit definitions)

The ε - δ definition of limits and the sequence definition of limits are equivalent.

(proof on next two slides)

<u>Note</u>: The definition of a limit via sequences is sometimes easier to use than the ε - δ definition.

18/61

Proof of Equivalence of ε - δ definition and sequence definition of limit.

Proof $(\varepsilon \cdot \delta \implies \text{seq})$.

Suppose the ε - δ definition holds and $\{e_n\}$ is a sequence in $E \setminus \{x_0\}$ that converges to x_0 . Given $\varepsilon > 0$, there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$. But since $e_n \to x_0$, given $\delta > 0$, there exists $N \in \mathbb{N}$ such that, for all $n \ge N$, $|e_n - x_0| < \delta$. This means that if $n \ge N$ then $x = e_n$ satisfies $0 < |x - x_0| < \delta$, implying that we can put $x = e_n$ in the statement $|f(x) - L| < \varepsilon$. Hence, for all $n \ge N$, $|f(e_n) - L| < \varepsilon$. Thus,

$$e_n \to x_0 \implies f(e_n) \to L$$
,

as required.

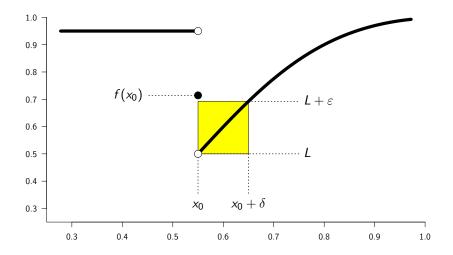
Proof of Equivalence of ε - δ definition and sequence definition of limit.

Proof (seq $\implies \varepsilon \cdot \delta$) via contrapositive.

Suppose that as $x \to x_0$, $f(x) \not\to L$ according to the ε - δ definition. We must show that $f(x) \not\to L$ according to the sequence definition.

Since the ε - δ criterion does <u>not</u> hold, $\exists \varepsilon > 0$ such that $\forall \delta > 0$ there is some $x_{\delta} \in E$ for which $0 < |x_{\delta} - x_0| < \delta$ and yet $|f(x_{\delta}) - L| \ge \varepsilon$. This is true, in particular, for $\delta = 1/n$, where *n* is any natural number. Thus, $\exists \varepsilon > 0$ such that: $\forall n \in \mathbb{N}$, there exists $x_n \in E$ such that $0 < |x_n - x_0| < 1/n$ and yet $|f(x_n) - L| \ge \varepsilon$. This demonstrates that there is a sequence $\{x_n\}$ in $E \setminus \{x_0\}$ for which $x_n \to x_0$ and yet $f(x_n) \not\rightarrow L$. Hence, $f(x) \not\rightarrow L$ as $x \to x_0$ according to the sequence criterion, as required. Continuity II

One-sided limits



Instructor: David Earn Mathematics 3A03 Real Analysis I

Definition (Right-Hand Limit)

Let $f : E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = L$$

if for every $\varepsilon > 0$ there is a $\delta > 0$ so that

$$|f(x) - L| < \varepsilon$$

whenever $x_0 < x < x_0 + \delta$ and $x \in E$.

One-sided limits can also be expressed in terms of sequence convergence.

Definition (Right-Hand Limit – sequence version)

Let $f : E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = L$$

if for every decreasing sequence $\{e_n\}$ of points of E with $e_n > x_0$ and $e_n \to x_0$ as $n \to \infty$,

$$\lim_{n\to\infty}f(e_n)=L.$$

Definition (Right-Hand Infinite Limit)

Let $f : E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = \infty$$

if for every M > 0 there is a $\delta > 0$ such that $f(x) \ge M$ whenever $x_0 < x < x_0 + \delta$ and $x \in E$.

There are theorems for limits of functions of a real variable that correspond (and have similar proofs) to the various results we proved for limits of sequences:

- Uniqueness of limits
- Algebra of limits
- Order properties of limits
- Limits of absolute values
- Limits of Max/Min

See Chapter 5 of textbook for details.

Limits of compositions of functions

When is
$$\lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right)$$
?

Theorem (Limit of composition)

Suppose

$$\lim_{x\to x_0}f(x)=L.$$

If g is a function defined in a neighborhood of the point L and

$$\lim_{z\to L}g(z)=g(L)$$

then

$$\lim_{x\to x_0} g(f(x)) = g\left(\lim_{x\to x_0} f(x)\right) = g(L).$$

(Textbook (TBB) §5.2.5)

Limits of compositions of functions – more generally

<u>Note</u>: It is a little more complicated to generalize the statement of this theorem so as to minimize the set on which g must be defined but the proof is no more difficult.

Theorem (Limit of composition)

Let $A, B \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, $f(A) \subseteq B$, and $g : B \to \mathbb{R}$. Suppose x_0 is an accumulation point of A and

$$\lim_{x\to x_0}f(x)=L.$$

Suppose further that g is defined at L. If L is an accumulation point of B and

$$\lim_{z\to L}g(z)=g(L)\,,$$

 $\underline{or} \exists \delta > 0$ such that f(x) = L for all $x \in (x_0 - \delta, x_0 + \delta) \cap A$, then

$$\lim_{x\to x_0} g(f(x)) = g\left(\lim_{x\to x_0} f(x)\right) = g(L).$$

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

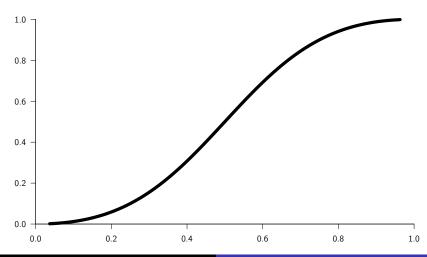
Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 20 Continuity III Thursday 24 October 2019

Continuity

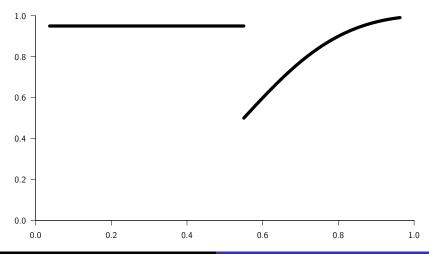
Intuitively, a function f is *continuous* if you can draw its graph without lifting your pencil from the paper...



Instructor: David Earn Mathematics 3A03 Real Analysis I

Continuity

and *discontinuous* otherwise...



Instructor: David Earn Mathematics 3A03 Real Analysis I

In order to develop a rigorous foundation for the theory of functions, we need to be more precise about what we mean by "continuous".

The main challenge is to define "continuity" in a way that works consistently on sets other than intervals (and generalizes to spaces that are more abstract than \mathbb{R}).

We will define:

- continuity at a single point;
- continuity on an open interval;
- continuity on a closed interval;
- continuity on more general sets.

Definition (Continuous at an interior point of the domain of f)

If the function f is defined in a neighbourhood of the point x_0 then we say f is **continuous at** x_0 iff

$$\lim_{x\to x_0}f(x)=f(x_0).$$

This definition works more generally provided x_0 is a point of accumulation of the domain of f (notation: dom(f)).

We will also consider a function to be continuous at any isolated point in its domain.

Pointwise continuity

Definition (Continuous at any $x_0 \in \text{dom}(f)$ – limit version)

If $x_0 \in \text{dom}(f)$ then f is **continuous at** x_0 iff x_0 is either an isolated point of dom(f) or x_0 is an accumulation point of dom(f) and $\lim_{x\to x_0} f(x) = f(x_0)$.

Definition (Continuous at any $x_0 \in \text{dom}(f)$ – sequence version)

If $x_0 \in \text{dom}(f)$ then f is **continuous at** x_0 iff for any sequence $\{x_n\}$ in dom(f), if $x_n \to x_0$ then $f(x_n) \to f(x_0)$.

Definition (Continuous at any $x_0 \in \text{dom}(f) - \varepsilon \cdot \delta$ version)

If $x_0 \in \text{dom}(f)$ then f is *continuous at* x_0 iff for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in \text{dom}(f)$ and $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \varepsilon$.

Pointwise continuity

Example

Suppose $f : A \to \mathbb{R}$. In which cases is f continuous on A?

■
$$A = (0,1) \cup \{2\}, \quad f(x) = x;$$

■ $A = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{2\}, \quad f(x) = x;$
■ $A = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{2\}, \quad f(x) = \text{whatever you like}$

Example

Is it possible for a function f to be discontinuous at every point of \mathbb{R} and yet for its restriction to the rational numbers $(f|_{\mathbb{Q}})$ to be continuous at every point in \mathbb{Q} ?

Extra Challenge Problem:

Prove or disprove: There is a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at every irrational number and discontinuous at every rational number.

Continuity on an interval

Definition (Continuous on an open interval)

The function f is said to be **continuous on** (a, b) iff

$$\lim_{x\to x_0} f(x) = f(x_0) \quad \text{for all } x_0 \in (a,b) \,.$$

Definition (Continuous on a closed interval)

The function f is said to be *continuous on* [a, b] iff it is continuous on the open interval (a, b), and

$$\lim_{x\to a^+} f(x) = f(a) \quad \text{and} \quad \lim_{x\to b^-} f(x) = f(b).$$

Continuity on an arbitrary set $E \subseteq \mathbb{R}$

Definition (Continuous on a set E)

The function f is said to be *continuous on* E iff f is continuous at each point $x \in E$.

Example

- Every polynomial is continuous on \mathbb{R} .
- Every rational function is continuous on its domain (*i.e.*, avoiding points where the denominator is zero).

These facts are painful to prove directly from the definition. But they follow easily if from the theorem on the algebra of limits.

Continuity of compositions of functions

Theorem (Continuity of $f \circ g$ at a point)

If g is continuous at x_0 and f is continuous at $g(x_0)$ then $f \circ g$ is continuous at x_0 .

Consequently, if g is continuous at x_0 and f is continuous at $g(x_0)$ then

$$\lim_{x\to x_0} f(g(x)) = f\left(\lim_{x\to x_0} g(x)\right).$$

Theorem (Continuity of $f \circ g$ on a set)

If g is continuous on $A \subseteq \mathbb{R}$ and f is continuous on g(A) then $f \circ g$ is continuous on A.

Continuity of compositions of functions

Example

Use the theorem on continuity of $f \circ g$, and the theorem on the algebra of limits, to prove that

1 the polynomial $x^8 + x^3 + 2$ is continuous on \mathbb{R} ;

2 the rational function $\frac{x^2+2}{x^2-2}$ is continuous on $\mathbb{R} \setminus \{-\sqrt{2}, \sqrt{2}\}$.

3 the function $\sqrt{\frac{x^2+2}{x^2-2}}$ is continuous on its domain.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 21 Continuity IV Friday 25 October 2019

Math 3A03 Test #1

Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)

- An incomplete version of Assignment 4 is posted on the course web site. Due 5 November 2019 at 2:25pm via crowdmark. BUT you should do the posted questions before Test #1 (check again over the weekend for additional posted questions).
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

Last time...

- Continuity at a point and on a set.
- Continuity of compositions.

In the ε - δ definition of continuity, the δ that must exist depends on ε **AND** on the point x_0 , *i.e.*, $\delta = \delta(f, \varepsilon, x_0)$.

Definition (Uniformly continuous)

If $f : A \to \mathbb{R}$ then f is said to be *uniformly continuous on* A iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, y \in A$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$.

<u>Note</u>: This is a <u>stronger</u> form of continuity: Given any $\varepsilon > 0$, there is a <u>single</u> $\delta > 0$ that works for the entire set A. (δ still depends on f and ε .)

Example

Prove that f(x) = 2x + 1 is uniformly continuous on \mathbb{R} .

Proof.

We must show that $\forall \varepsilon > 0$, $\exists \delta > 0$ such that if $x, y \in \mathbb{R}$ and $|x - y| < \delta$ then $|(2x + 1) - (2y + 1)| < \varepsilon$. But note that

$$|(2x + 1) - (2y + 1)| = |2x - 2y| = 2|x - y|$$

so if we choose $\delta = \varepsilon/2$ then we have

$$|(2x+1)-(2y+1)|=2\,|x-y|<2\cdotrac{arepsilon}{2}=arepsilon\,,$$

as required.

Example

Prove that
$$f(x) = \sqrt{x}$$
 is uniformly continuous on $\left[\frac{1}{8}, 1\right]$.

Proof.

We must show that $\forall \varepsilon > 0$, $\exists \delta > 0$ such that if $x, y \in [\frac{1}{8}, 1]$ and $|x - y| < \delta$ then $|\sqrt{x} - \sqrt{y}| < \varepsilon$. But note that

$$\begin{aligned} \left|\sqrt{x} - \sqrt{y}\right| &= \left|\left(\sqrt{x} - \sqrt{y}\right)\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right| \\ &= \left|\frac{x - y}{\sqrt{x} + \sqrt{y}}\right| \le \left|\frac{x - y}{\sqrt{\frac{1}{8}} + \sqrt{\frac{1}{8}}}\right| = \left|\frac{x - y}{\frac{1}{\sqrt{2}}}\right| = \sqrt{2}\left|x - y\right|, \end{aligned}$$

so taking $\delta = \varepsilon / \sqrt{2}$, we have $\left| \sqrt{x} - \sqrt{y} \right| < \sqrt{2} \cdot \frac{\varepsilon}{\sqrt{2}} = \varepsilon$.

Example

Is $f(x) = \sqrt{x}$ uniformly continuous on [0, 1]?

<u>Note</u>: The proof on the previous slide fails if the lower limit is 0, but that doesn't establish that the function is <u>not</u> uniformly continuous.

Either we must find a different proof that works for the whole interval [0,1], or we must show that $\exists \varepsilon > 0$ such that $\forall \delta > 0$, $\exists x, y \in [0,1]$ such that $|x - y| < \delta$ and yet $|\sqrt{x} - \sqrt{y}| \ge \varepsilon$.

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 21: Is $f(x) = \sqrt{x}$ uniformly continuous on [0, 1]?

Theorem (Cont. on a closed interval \implies unif. cont.)

If $f : [a, b] \to \mathbb{R}$ is continuous then f is uniformly continuous.

(Textbook (TBB) Theorem 5.48, p. 323)

Theorem (Unif. cont. on a bounded interval \implies bounded)

If f is uniformly continuous on a bounded interval I then f is bounded on I.

Corollary (Continuous on a closed interval \implies bounded)

If $f : [a, b] \rightarrow \mathbb{R}$ is continuous then f is bounded.

Proof.

Combine the above two theorems.

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 22 Continuity V Thursday 31 October 2019

Poll

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Post-Test #1

Theorem (Cont. on a closed interval \implies unif. cont.)

If $f : [a, b] \rightarrow \mathbb{R}$ is continuous then f is uniformly continuous.

(Textbook (TBB) Theorem 5.48, p. 323)

Theorem (Unif. cont. on a bounded interval \implies bounded)

If f is uniformly continuous on a bounded interval I then f is bounded on I.

Corollary (Continuous on a closed interval \implies bounded)

If $f : [a, b] \rightarrow \mathbb{R}$ is continuous then f is bounded.

Proof.

Combine the above two theorems.

Theorem (Unif. cont. on a bounded interval \implies bounded)

If f is uniformly continuous on a bounded interval I then f is bounded on I.

We will come back to proof, but just use the result today.

Clean proof.

Suppose f is uniformly continuous on the interval I with endpoints a, b (where a < b). Then, given $\varepsilon > 0$ we can find $\delta > 0$ such that if $x, y \in I$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$.

Moreover, given any $\delta > 0$ and any c > 0, we can find $n \in \mathbb{N}$ such that $0 < \frac{c}{n} < \delta$.

Choose $n \in \mathbb{N}$ such that if $x, y \in I$ and $|x - y| < 2(\frac{b-a}{n})$ then |f(x) - f(y)| < 1.

Continued.

Clean proof (continued).

Divide *I* into *n* subintervals with endpoints

$$x_i = a + i\left(rac{b-a}{n}
ight), \qquad i = 0, 1, \dots, n.$$

For $0 \le i \le n-1$, define $I_i = [x_i, x_{i+1}] \cap I$ (we intersect with I in case $a \notin I$ or $b \notin I$), and note that $\forall x, y \in I_i$ we have $|x - y| \le \frac{b-a}{n} < 2(\frac{b-a}{n})$ and hence $|f(x) - f(y)| < 1 \quad \forall x, y \in I_i$. Let $\overline{x}_i = (x_i + x_{i+1})/2$ (the midpoint of interval I_i). Then, in particular, we have $|f(x) - f(\overline{x}_i)| < 1 \quad \forall x \in I_i$, *i.e.*,

$$f(\overline{x}_i) - 1 < f(x) < f(\overline{x}_i) + 1 \qquad \forall x \in I_i.$$

Thus, f is bounded on I_i and therefore has a LUB and GLB on I_i . Continued...

Clean proof (continued).

Therefore, for $i = 0, 1, \ldots, n-1$, define

$$m_i = \inf\{f(x) : x \in I_i\},\$$

$$M_i = \sup\{f(x) : x \in I_i\},\$$

and let

$$m = \min\{m_i : i = 0, 1, \dots, n-1\},\$$

$$M = \max\{M_i : i = 0, 1, \dots, n-1\}.$$

Then

$$m \leq f(x) \leq M$$
 $\forall x \in I = \bigcup_{i=1}^{n-1} I_i$,

i.e., f is bounded on the entire interval I.

Although the corollary was stated in terms of a closed interval [a, b], the proof establishes something more general.

Theorem

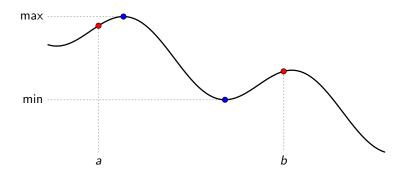
A continuous function on a compact set is uniformly continuous.

The converse is also true:

Theorem

If <u>every</u> continuous function on a set *E* is uniformly continuous then *E* is compact.

Recall that compactness is associated with global properties (as opposed to local properties). Uniform continuity is a global property in that a single δ is sufficient for an entire set.



Theorem (Extreme value theorem)

A continuous function on a closed interval [a, b] has a maximum and minimum value on [a, b].

More generally:

Theorem

A continuous function on a compact set has a maximum and minimum value.

Theorem

A continuous function on a <u>compact set</u> has a <u>maximum</u> and <u>minimum</u> value.

Proof (by contradiction).

Since f is continuous on the compact set [a, b], it is bounded on [a, b]. This means that the *range* of f, *i.e.*, the set

$$f([a,b]) \stackrel{\text{def}}{=} \{f(x) : x \in [a,b]\}$$

is bounded. This set is not \emptyset , so it has a LUB α . Since $\alpha \ge f(x)$ for $x \in [a, b]$, it suffices to show that $\alpha = f(y)$ for some $y \in [a, b]$.

Suppose instead that $\alpha \neq f(y)$ for any $y \in [a, b]$, *i.e.*, $\alpha > f(y)$ for all $y \in [a, b]$. Then the function g defined by ...

Proof of Extreme Value Theorem (continued).

$$g(x) = \frac{1}{\alpha - f(x)}, \qquad x \in [a, b],$$

is positive and continuous on [a, b], since the denominator of the RHS is always positive. On the other hand, α is the LUB of f([a, b]); this means that

$$\forall \varepsilon > 0 \quad \exists x \in [a, b] \quad + \quad \alpha - f(x) < \varepsilon \,.$$

Since $\alpha - f(x) > 0$, this, in turn, means that

$$\forall \varepsilon > 0 \quad \exists x \in [a, b] \quad \} \quad g(x) > \frac{1}{\varepsilon}$$

But <u>this</u> means that g is <u>not</u> bounded on [a, b], ...

Proof of Extreme Value Theorem (continued).

contradicting the theorem that a continuous function on a compact set is bounded. $\Rightarrow \Leftarrow$

Therefore, $\alpha = f(y)$ for some $y \in [a, b]$, *i.e.*, f has a maximum on [a, b].

A similar argument shows that f has a minimum on [a, b].

Uniform continuity is stronger than continuity

Theorem (Uniform continuity \implies continuity)

Suppose $f : E \to \mathbb{R}$ is uniformly continuous. Then f is continuous.

Proof.

f uniformly continuous means $\forall \varepsilon > 0 \ \exists \delta > 0$ such that if $x, y \in E$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. If we fix any point $y \in E$ then this is the definition of continuity at y, *i.e.*, f is continuous at each $y \in E$.

<u>Note</u>: Converse is false!

Example (Continuous \Rightarrow uniformly continuous) f(x) = 1/x on is continuous on (0,1) but not uniformly continuous on (0,1).

Key theorems about uniform continuity

- Uniformly continuous on a bounded interval ⇒ bounded
 Proof skipped but in slides.
- 2 Uniformly continuous on a compact set ⇒ bounded
 Generalization of 1 in case of closed interval [a, b].
- 3 Continuous on a compact set ⇒ uniformly continuous
 Mentioned for a closed interval [a, b] and a general compact set.
- 4 Continuous on a compact set ⇒ bounded
 Combine 3 with 2.

<u>Note</u>: Continuity is a *local* property, whereas uniform continuity is a *global* property.

Key theorems relating continuity and compactness

1 Continuous on a compact set \implies uniformly continuous.

Also stated on previous slide.

2 Continuous image of a compact set is compact.

 Not discussed in class but a great exercise and important result.

3 Extreme Value Theorem