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Announcements

New, exciting topic today. . .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Sequences and Series
of Functions
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Limits of Functions

We know that it can be useful to represent functions as limits of
other functions.
Example
The power series expansion

ex = 1 + x
1! + x2

2! + x3

3! + · · ·

expresses the exponential ex as a certain limit of the functions

1, 1+ x
1! , 1+ x

1! + x2

2! , 1+ x
1! + x2

2! + x3

3! , · · ·

Our goal is to give meaning to the phrase “limit of functions”, and
discuss how functions behave under limits.

Instructor: David Earn Mathematics 3A03 Real Analysis I



Sequences and Series of Functions Pointwise Convergence 7/53

Pointwise Convergence

There are multiple inequivalent ways to define the limit of a
sequence of functions.
Consequently, there are multiple different notions of what it
means for a sequence of functions to converge.
Some convergence notions are better behaved than others.

We will begin with the simplest notion of convergence.

Definition (Pointwise Convergence)
Suppose {fn} is a sequence of functions defined on a domain
D ⊆ R, and let f be another function defined on D. Then {fn}
converges pointwise on D to f if, for every x ∈ D, the sequence
{fn(x)} of real numbers converges to f (x).

What useful properties of functions does pointwise convergence
preserve?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

Example

fn(x) =
{

xn 0 ≤ x ≤ 1,

1 x ≥ 1.
lim

n→∞
fn(x) =

{
0 0 ≤ x < 1
1 x ≥ 1

The limit of this sequence
(of continuous functions) is
not continuous.

If we smooth the corner of
fn(x) at x = 1, we get a
sequence of differentiable
functions that converge to a
function that is not even
continuous.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

Example
Define fn(x) on [0, 1] as follows:

fn(x) =


2n2x , 0 ≤ x ≤ 1

2n
2n − 2n2x , 1

2n ≤ x ≤ 1
n

0, x ≥ 1
n .

f1
f2

f4

f8
lim

n→∞
fn(x) = 0 ∀ x

∫ 1

0
fn = 1

2 ∀ n ∈ N

∫ 1

0
lim

n→∞
fn = 0

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

In the previous example, each fn is integrable and the limit
function (the zero function) is also integrable. The example shows
that, nevertheless, the sequence of integrals {

∫
fn} need not

converge to the integral of the limit function
∫

f .

Is pointwise convergence sufficient for integrability to be passed on
to the limit function?

If so, how do we prove it?
If not, what is a counter-example?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise Convergence

Example
Let’s try to construct a sequence of functions that converges to a
non-integrable function. The one such function that we have discussed is

f (x) =
{

1 x ∈ Q,

0 x /∈ Q.

Let’s construct a sequence of integrable functions that converges to f .
Since Q is countable, we can list all of its elements in a sequence
{qk : k = 1, 2, . . .}. Now define fn on [0, 1] via

fn(x) =
{

1 x ∈ {q1, . . . , qn},

0 otherwise.

Then on any closed interval (e.g., [0, 1]) each fn is integrable, since it is
piecewise continuous, but fn → f , which is not integrable on any
interval.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

A much better behaved notion of convergence is the following.

Definition (fn → f uniformly)
Suppose {fn} is a sequence of functions defined on a domain
D ⊆ R, and let f be another function defined on D. Then {fn}
converges uniformly on D to f if, for every ε > 0, there is some
N ∈ N so that, for all x ∈ D,

n ≥ N =⇒ |fn(x) − f (x)| < ε.

Note that {fn} converges uniformly to f if and only if ∀ε > 0,
∃N ∈ N such that

n ≥ N =⇒ supx∈D |fn(x) − f (x)| < ε.

uniform convergence =⇒
⇍= pointwise convergence

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

The sense in which uniform convergence is better behaved
than pointwise convergence is that it does preserve at least
some properties of the sequence of functions.

Which properties?

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

Theorem (Continuity and Uniform Convergence)
Suppose {fn} is a sequence of functions that converges uniformly
on [a, b] to f . If each fn is continuous on [a, b], then f is
continuous on [a, b].

What should our proof strategy be?
Our goal is to show that the limit function f is continuous for all
x ∈ [a, b]. So given x ∈ [a, b], we must show that for any ε > 0 we can
find a small enough neighbourhood of x , say (x − δ, x + δ) for some small
δ, such that |f (x) − f (y)| < ε if y ∈ (x − δ, x + δ), i.e., if |x − y | < δ.
Somehow we have to manage this using the facts that (i) each fn is
continuous and (ii) fn → f uniformly.
The key is that (for any n) if x and y are close then fn(x) and fn(y) are
close, and, if n is large enough, fn is (uniformly) close to f throughout
[a, b], so continuity is “passed through” to the limit.

Let’s make this precise. . .
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

Proof: fn continuous ∀n and fn → f uniformly =⇒ f continuous.
Fix x ∈ [a, b] and ε > 0. We must show ∃δ > 0 such that if
y ∈ [a, b] and |x − y | < δ then |f (x) − f (y)| < ε.
Since fn → f uniformly, ∃N ∈ N )– |fN(y) − f (y)| < ε

3 ∀y ∈ [a, b]
(in particular, x ∈ [a, b], so we have |fN(x) − f (x)| < ε

3).
Fix such an integer N.
Since fN is continuous, there is some δ > 0 such that if y ∈ [a, b]
satisfies |x − y | < δ, then |fN(x) − fN(y)| < ε

3 . For such y , we
then have
|f (x) − f (y)| = |f (x) − fN(x) + fN(x) − fN(y) + fN(y) − f (y)|

≤ |f (x) − fN(x)| + |fN(x) − fN(y)| + |fN(y) − f (y)|

<
ε

3 + ε

3 + ε

3 = ε,

as required.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

Theorem (Integrability and Uniform Convergence)
Suppose {fn} is a sequence of functions that converges uniformly
on [a, b] to f . If each fn is integrable on [a, b], then f is integrable
and ∫ b

a
f = lim

n→∞

∫ b

a
fn .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

I have posted the test and solutions on the course web site.

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/tests/tests.html
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Last time. . .

Convergence of sequences of functions:
Pointwise convergence

Uniform convergence

Theorem about continuity and uniform convergence

I have added another example to the slides for the previous
lecture: there is now a new example on integrability and
pointwise convergence.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

Theorem (Integrability and Uniform Convergence)
Suppose {fn} is a sequence of functions that converges uniformly
on [a, b] to f . If each fn is integrable on [a, b], then f is integrable
and ∫ b

a
f = lim

n→∞

∫ b

a
fn . (∗)

(TBB §9.5.2, p. 571ff)

The proof that f is integrable is rather involved. We will skip it,
and assume that the limit function is integrable.
To prove (∗), we will need the fact that if f is integrable then so is
|f |, and

∣∣∣∫ b
a f

∣∣∣ ≤
∫ b

a |f |. This “triangle inequality” is an excellent
exercise.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

Proof that
∫ b

a f = limn→∞
∫ b

a fn given that f is integrable.
Given that f is integrable, to prove the equality, we will show that

∀ε > 0, ∃N ∈ N such that
∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ < ε ∀n ≥ N.

For any n ∈ N, we have∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ =
∣∣∣∣∫ b

a
(f − fn)

∣∣∣∣ ≤
∫ b

a
|f − fn|

≤ U
(

|f − fn| , {a, b}
)

=
(

sup
x∈[a,b]

∣∣f (x) − fn(x)
∣∣)(b − a) .

But fn converges uniformly to f , which means that

∃N ∈ N such that sup
x∈[a,b]

|f (x) − fn(x)| <
ε

b − a ∀n ≥ N.

For such n, we have
∣∣∣∫ b

a f −
∫ b

a fn

∣∣∣ < ε, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence

The interaction between uniform convergence and differentiability
is more subtle.

Example (fn diff’ble ∀n and fn → f uniformly ≠⇒ f diff’ble)

fn(x) = 1
2n + (x2)

(
1+ 1

n

)
/2

Each fn is differentiable

fn(x) → f (x) = |x |
uniformly

Limit function f is not
differentiable.

Note: Graph shows n = 1, 2, 4, 64 for x ∈ [−1, 1].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence
Even if fn → f uniformly, and all the fn and f are differentiable, it
is not necessarily true that f ′

n → f ′.
Example (fn → f uniformly and f ′

n, f ′ exist ≠⇒ f ′
n → f ′)

fn(x) = 1
n sin (n2x)

fn(x) → f (x) ≡ 0
uniformly

f ′
n(x) = n cos (n2x)

lim
n→∞

f ′
n(x) does not exist

(e.g., fn(0) = n, which
diverges as n → ∞)

Note: Graph shows n = 1, 2 on interval [−20, 20].

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform Convergence
The theorem on integrability and uniform convergence, together
with the fundamental theorem of calculus, must yield some result
on uniformly convergent sequences of differentiable functions.
But the result must make hypotheses that avoid the failures in the
examples on the two previous slides.

Theorem (Differentiability and Uniform Convergence)
Suppose {fn} is a sequence of differentiable functions on [a, b]
such that

1 f ′
n is integrable for each n,

2 the sequence {f ′
n} converges uniformly on [a, b] to a

continuous function g,
3 the sequence {fn} converges pointwise to a function f .

Then f is differentiable and {f ′
n} converges uniformly to f ′.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Uniform convergence

Proof of theorem on Differentiability and Uniform Convergence.
Since the function g to which f ′

n converges is continuous, it is
certainly integrable. So we can apply the theorem on integrability
and uniform convergence on the interval [a, x ] to infer that∫ x

a
g = lim

n→∞

∫ x

a
f ′
n f ′

n → g uniformly

= lim
n→∞

(
fn(x) − fn(a)

)
SFTC

= f (x) − f (a) fn → f pointwise

Since g is continuous, FFTC implies that

g(x) = lim
n→∞

f ′
n(x) = f ′(x)

for all x ∈ [a, b].
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Real Numbers

Suppose {xn} is a sequence of real numbers. Recall that the
sequence of partial sums is the sequence {sn} defined by

sn =
n∑

k=1
xn .

If the sequence of partial sums converges, then we write the limit as
∞∑

k=1
xk = lim

n→∞

n∑
k=1

xn = lim
n→∞

sn .

In this case, we call ∑∞
k=1 xk a convergent series. A divergent

series is a sequence of partial sums that diverges; we sometimes
abuse notation and write ∑∞

k=1 xk for divergent series as well.
A series is either a convergent series or a divergent series.
Our goal now is to extend this notion of series to sequences of
functions.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

Suppose {fn} is a sequence of functions defined on a set D ⊆ R.
The sequence of partial sums is the sequence {Sn} where Sn is
the function defined on D by

Sn(x) =
n∑

k=1
fk(x) .

When talking about limits of the Sn, we will write ∑∞
k=1 fk and

refer to this as a series.
Keep in mind that this is very informal, since the terminology does

not specify any sense in which the Sn converge, nor does it assume
that the Sn converge at all!
We will now make this more formal.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

Suppose {fn} is a sequence of functions defined on a domain D,
and {Sn} is its sequence of partial sums.

Definition (Convergence of Series)
If the sequence of partial sums {Sn} converges pointwise on D to a
function f , then we say that the series ∑∞

k=1 fk converges
pointwise on D to f .
If the {Sn} converge uniformly on D to a function f , then we say
that the series ∑∞

k=1 fk converges uniformly on D to f .
In both cases, we will write f = ∑∞

k=1 fk to denote that the series
converges to f .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

The theorems on convergence of sequences of integrable,
continuous and differentiable functions have several immediate
implications for series of functions.
In the following, we assume that {fn} is a sequence of functions
defined on an interval [a, b].

Corollary (Integrals of Series)
Suppose the fn are integrable and ∑∞

k=1 fk converges uniformly to
a function f . Then f is integrable and∫ b

a
f =

∞∑
k=1

∫ b

a
fk .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Series of Functions

Corollary (Continuity of Series)
Suppose the fn are continuous and ∑∞

k=1 fk converges uniformly to
a function f . Then f is continuous.

Corollary (Differentiability of Series)
Suppose {fn} is a sequence of differentiable functions on [a, b]
such that

f ′
n is integrable for each n,

the series ∑∞
k=1 f ′

k converges uniformly on [a, b] to a
continuous function g,
the series ∑∞

k=1 fk converges pointwise to a function f .
Then f is differentiable and f ′ = ∑∞

k=1 f ′
k .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

No lecture this Friday (7 March 2025).
Assignment 4 is posted on the course web site.

Last time: Convergence of sequences of functions:
Pointwise convergence

Uniform convergence

Theorem about continuity and uniform convergence

Theorem about integrability and uniform convergence

Theorem about differentiability and uniform convergence

Corollaries for series of functions

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence of Series of Functions

We have seen that several useful conclusions can be drawn when a
series converges uniformly. The following gives a practical way of
proving uniform convergence for a series of functions.

Theorem (Weierstrass M-test)
Let {fn} be a sequence of functions defined on D ⊆ R, and
suppose {Mn} is a sequence of real numbers such that

|fn(x)| ≤ Mn, ∀x ∈ D, ∀n ∈ N.

If
∞∑

n=1
Mn converges, then

∞∑
k=1

fk converges uniformly.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence of Series of Functions

Approach to proving the Weierstrass M-test:

Let Sn =
n∑

k=1
fk be the nth partial sum.

Show that for every ε > 0, there is some N ∈ N so that

sup
x∈D

|Sn(x) − Sm(x)| < ε , ∀n, m ≥ N.

This condition is called the uniform Cauchy criterion.

Prove that the uniform Cauchy criterion implies uniform
convergence.

This part is an excellent exercise for you.
Note: The proof is similar to the proof of the Cauchy criterion
for real numbers.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence of Series of Functions

Proof of the Weierstrass M-test.
Let ε > 0. Suppose the series

∑
Mn converges. By the Cauchy criterion

for real numbers, there is some integer N so that∣∣∣∣∣
n∑

k=1
Mk −

m∑
k=1

Mk

∣∣∣∣∣ < ε , ∀n, m ≥ N.

Without loss of generality, we can assume m < n, so the above can be
written

Mm+1 + Mm+2 + · · · + Mn < ε.

Note that we have Sn − Sm = fm+1 + fm+2 + · · · + fn, so the
assumption that |fk(x)| ≤ Mk implies that

|Sn(x) − Sm(x)| = |fm+1(x) + fm+2(x) + · · · + fn(x)|
≤ Mm+1 + Mm+2 + · · · + Mn < ε.

This is true ∀x ∈ D, hence sup
x∈D

|Sn(x) − Sm(x)| < ε , i.e.,
the uniform Cauchy criterion is satisfied.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence of Series of Functions

In order to use the Weierstrass M-test, we need to know whether an
associated series of real numbers converges. The most useful standard
results are:

The geometric series
∞∑

n=0
an converges if and only if |a| < 1, in

which case the sum of the series is 1
1 − a .

The Ratio Test: (TBB Theorem 3.28)

If an > 0 for all n ∈ N and lim
n→∞

an+1
an

< 1 then
∞∑

n=1
an converges.

The Root Test: (TBB Theorem 3.30)

If an ≥ 0 for all n ∈ N and lim
n→∞

n
√an < 1 then

∞∑
n=1

an converges.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proving Uniform Convergence of Series of Functions

The Integral Test: (TBB Theorem 3.35)

Let f be a nonnegative decreasing function on [1, ∞) such
that ∫ K

1
f exists for all K > 1.

Then
∞∑

k=1
f (k) converges ⇐⇒ lim

K→∞

∫ K

1
f (x) dx exists.

(There are many other known results concerning convergence
series of real numbers. See TBB Chapter 3.)

Instructor: David Earn Mathematics 3A03 Real Analysis I



Sequences and Series of Functions 42/53

Proving Uniform Convergence of Series of Functions

Example

Let p > 1, and consider the series
∞∑

k=1

sin(kx)
kp .

This series satisfies
∣∣∣∣ sin(kx)

kp

∣∣∣∣ ≤ 1
kp for all x ∈ R.

Since the series
∞∑

k=1

1
kp converges (by the integral test), it follows from

the Weierstrass M-test that the series
∑∞

k=1
sin(kx)

kp converges uniformly.
Hence it is a continuous function.
In fact, if p > 2 then the series

∑∞
k=1

sin(kx)
kp is differentiable:

Let fk(x) = sin(kx)
kp . The f ′

k are continuous and another application of the
Weierstrass M-test shows that

∑∞
k=1 f ′

k converges uniformly. Hence the
series is differentiable and the derivative is

∑∞
k=1 f ′

k .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Suppose {an} is a sequence of real numbers.

Definition (Power Series)
A power series (centred at 0) is a series of the form

∞∑
k=0

akxk .

More generally, a power series centred at c has the form
∞∑

k=0
ak(x − c)k .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Corollary (Convergence of Power Series)

Suppose that the series f (x0) =
∞∑

k=0
akxk

0 converges for some

x0 > 0, and suppose 0 < a < x0. Then on [−a, a], the series

f (x) =
∞∑

k=0
akxk

converges uniformly. Moreover, f is continuous and∫ d

c
f =

∞∑
k=0

ak

∫ d

c
xk ∀c, d ∈ [−a, a].

Finally, f is differentiable and
∞∑

k=1
kakxk−1 converges uniformly on

[−a, a] to f ′.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Sketch of proof of convergence of f (x) =
∞∑

k=0
akxk on [−a, a]

Weierstrass M-test with Mk = akxk
0

=⇒ uniform convergence to f .

Uniform convergence to f =⇒ f is continuous and∫ d

c
f =

∞∑
k=0

ak

∫ d

c
xk .

That the derivative
∑∞

k=1 k ak xk−1 converges uniformly on [−a, a]
can be proved via the ratio test (TBB Theorem 3.28) or the root test
(TBB Theorem 3.30).

Uniform convergence of the derivative series
=⇒ uniform limit f is differentiable.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Power Series

Example (The simplest power series:
∞∑

k=0
xk )

If 0 < x0 < 1, then the series
∞∑

k=0
xk

0 converges. Consequently, for any

a ∈ (0, 1), the series
∞∑

k=0
xk converges uniformly on [−a, a] to a

differentiable function, which we know:
∞∑

k=0
xk = 1

1 − x .

Differentiating we obtain:
∞∑

k=1
k xk−1 = 1

(1 − x)2 .

Integrating (from 0 to x) we obtain:
∞∑

k=0

xk+1

k + 1 = − log(1 − x).

These series are all valid for x ∈ (−1, 1).

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?
Let f0(x) = the distance from x to the nearest integer.

1
2

-3 -2 -1 0 1 2 3

f0(x)

Let fn(x) = 1
2n f0(2nx).

1
4

-1 0 1

f1(x)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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How bad can a continuous function be?
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How bad can a continuous function be?

Now define Sn(x) =
n∑

k=1
fn(x).
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How bad can a continuous function be?
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How bad can a continuous function be?
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Poll

Go to
https://www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Function sequences: bad function

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php

