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Announcements

m New, exciting topic today. ..

Instructor: David Earn
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Limits of Functions

We know that it can be useful to represent functions as limits of
other functions.

Example

The power series expansion

-1 X X2 X3
SR TR TR T et

expresses the exponential e* as a certain limit of the functions

X X2 X X2 X3

X
1, 1+ﬁ’ 1+ﬁ+§’ 1+ﬁ+a+§,

Our goal is to give meaning to the phrase “/imit of functions”, and
discuss how functions behave under limits.

Instructor: David Earn



Pointwise Convergence

m There are multiple inequivalent ways to define the limit of a
sequence of functions.

m Consequently, there are multiple different notions of what it
means for a sequence of functions to converge.

m Some convergence notions are better behaved than others.

We will begin with the simplest notion of convergence.

Definition (Pointwise Convergence)

Suppose {f,} is a sequence of functions defined on a domain

D C R, and let f be another function defined on D. Then {f,}
converges pointwise on D to f if, for every x € D, the sequence
{fa(x)} of real numbers converges to f(x).

What useful properties of functions does pointwise convergence
preserve?

Instructor: David Earn
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Pointwise Convergence

x" 0<x<1, 0 0< 1
fn(X)—{l lim fo(x) = { =Xs

X 1. n—00 1 x 2 1

m The limit of this sequence
(of continuous functions) is
not continuous.

m If we smooth the corner of
fa(x) at x =1, we get a
sequence of differentiable
functions that converge to a
function that is not even
continuous.

Instructor: David Earn



Pointwise Convergence

Define fp(x) on [0, 1] as follows:

2n2x, ogxgi
fo(x) = < 2n — 2n°x, % <x< %
0, xz%

n—o0
fs
1
fn = VneN
f2|_ 0
f v _
f f Jim. =0

Instructor: David Earn



Pointwise Convergence

In the previous example, each f, is integrable and the limit
function (the zero function) is also integrable. The example shows
that, nevertheless, the sequence of integrals { [f,} need not
converge to the integral of the limit function [f.

Is pointwise convergence sufficient for integrability to be passed on
to the limit function?

If so, how do we prove it?
If not, what is a counter-example?

Instructor: David Earn



Pointwise Convergence

Let’s try to construct a sequence of functions that converges to a
non-integrable function. The one such function that we have discussed is

= {5 Tea

Let's construct a sequence of integrable functions that converges to f.

Since Q is countable, we can list all of its elements in a sequence
{gx : k=1,2,...}. Now define f, on [0, 1] via

f,-,(X): {1 Xe{qlv"'vqn}v

0 otherwise.

Then on any closed interval (e.g., [0,1]) each f, is integrable, since it is
piecewise continuous, but 7, — f, which is not integrable on any
interval. O

Instructor: David Earn



Uniform Convergence

A much better behaved notion of convergence is the following.

Definition (f, — f uniformly)

Suppose {f,} is a sequence of functions defined on a domain
D C R, and let f be another function defined on D. Then {f,}
converges uniformly on D to f if, for every ¢ > 0, there is some

N € N so that, for all x € D,
n>N = |f(x)—f(x)] <e.

Note that {f,} converges uniformly to f if and only if Ve >0,

dN € N such that
n>N = sup.plf(x)—f(x)| <e.

uniform convergence pointwise convergence

<=

Instructor: David Earn



Uniform Convergence

The sense in which uniform convergence is better behaved
than pointwise convergence is that it does preserve at least
some properties of the sequence of functions.

Which properties?

Instructor: David Earn
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Uniform Convergence

Theorem (Continuity and Uniform Convergence)

Suppose {f,} is a sequence of functions that converges uniformly
on [a, b] to f. If each f, is continuous on [a, b], then f is
continuous on [a, b].

What should our proof strategy be?

Our goal is to show that the limit function f is continuous for all

x € [a, b]. So given x € [a, b], we must show that for any € > 0 we can
find a small enough neighbourhood of x, say (x — d, x + §) for some small
d, such that |f(x) — ()| <e if y € (x=8,x+9), ie, if |x—y| <.
Somehow we have to manage this using the facts that (i) each , is
continuous and (ii) f, — f uniformly.

The key is that (for any n) if x and y are close then f,(x) and f,(y) are
close, and, if n is large enough, 7, is (uniformly) close to f throughout
[a, b], so continuity is “passed through” to the limit.

Let's make this precise. ..

Instructor: David Earn



Uniform Convergence

Proof: f, continuous Vn and f, — f uniformly = f continuous.

Fix x € [a, b] and € > 0. We must show 36 > 0 such that if
€ [a, b] and |x — y| < § then |f(x) — f(V)| <e.

Since f, — f uniformly, AN € N } |fu(y) — f(v)| < § Vy € [a, b]
(in particular, x € [a, b], so we have |fy(x) — f(x)| < 5).
Fix such an integer N.

Since fy is continuous, there is some § > 0 such that if y € [a, b]

satisfies [x — y| <, then |fy(x) — fu(v)| < §. For such v, we
then have
[F() = fW)I = [F(x) = fn(x) + fn(x) — () + fn(y) = ()l
< FG) = O+ [in(x) = vl + [ (y) = F(V)]
< % + % + % = g
as required. O

Instructor: David Earn



Uniform Convergence

Theorem (Integrability and Uniform Convergence)

Suppose {f,} is a sequence of functions that converges uniformly
on [a, b] to f. If each f, is integrable on [a, b], then f is integrable

and
b b
/ fF— Iim/ £
a n—o0 a

Instructor: David Earn
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Announcements

m | have posted the test and solutions on the course web site.
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https://davidearn.github.io/math3a/tests/tests.html

Last time. ..

Convergence of sequences of functions:

m Pointwise convergence
m Uniform convergence
m Theorem about continuity and uniform convergence

m | have added another example to the slides for the previous
lecture: there is now a new example on integrability and
pointwise convergence.

Instructor: David Earn



Uniform Convergence

Theorem (Integrability and Uniform Convergence)

Suppose {f,} is a sequence of functions that converges uniformly
on [a,b] to f. If each f, is integrable on [a, b], then f is integrable

and
b ) b
/af:nll_>ngo/a f,. (+)

(TBB §9.5.2, p. 571ff)
The proof that f is integrable is rather involved. We will skip it,
and assume that the limit function is integrable.

To prove (x), we will need the fact that if f is integrable then so is
|f], and

exercise.

Instructor: David Earn

fab f‘ < fab |f|. This “triangle inequality” is an excellent



Uniform Convergence

Proof that fab f=lim,se0 fab f,  given that f is integrable.

Given that f is integrable, to prove the equality, we will show that

Ve >0, dN &N such that

<e Vn> N.

f_
For any n € N, we have

/a /|fff|

< U(If - fl, {a b}) = (leljapb]|f(x)—fn(x)})(b—a).

fF_

But f, converges uniformly to f, which means that

3N € N such that  sup [f(x) — fo(x)| < 73 Vn > N.

x€|a,b]

b .
For such n, we have | < €, as required. O

Instructor: David Earn



Uniform Convergence

The interaction between uniform convergence and differentiability
is more subtle.

Example (f, diff'ble Vn and f, — f uniformly =4 f diff'ble)

flx) = &+ ()2

Each f, is differentiable

fa(x) = f(x) = |x|
uniformly

Limit function f is not

differentiable.

Note: Graph shows n = 1,2, 4,64 for x € [—1,1].

Instructor: David Earn



Uniform Convergence

Even if f, — f uniformly, and all the f, and f are differentiable, it
is not necessarily true that f, — f'.

Example (f, — f uniformly and f,, f’ exist =& f, — ')

fo(x) = Lsin(n?x)

n

fo(x) = f(x)=0
uniformly

f!(x) = ncos (n?x)

f(x) does not exist

lim
n—oo
(e.g., f,(0) = n, which
diverges as n — )

Note: Graph shows n = 1, 2 on interval [—20, 20].

Instructor: David Earn



Uniform Convergence

The theorem on integrability and uniform convergence, together
with the fundamental theorem of calculus, must yield some result
on uniformly convergent sequences of differentiable functions.

But the result must make hypotheses that avoid the failures in the
examples on the two previous slides.

Theorem (Differentiability and Uniform Convergence)

Suppose {f,} is a sequence of differentiable functions on [a, b]
such that

f' is integrable for each n,

B the sequence {f} converges uniformly on [a, b] to a
continuous function g,

the sequence {f,} converges pointwise to a function f.

Then f is differentiable and {f.} converges uniformly to f'.

Instructor: David Earn



Uniform convergence

Proof of theorem on Differentiability and Uniform Convergence.

Since the function g to which f, converges is continuous, it is
certainly integrable. So we can apply the theorem on integrability
and uniform convergence on the interval [a, x| to infer that

/ g = nLngo/ f f! — g uniformly
= lim (f,(x) — £:(a)) SFTC
= f(x)—f(a) fn — f pointwise

Since g is continuous, FFTC implies that

glx) = lim fi(x) = f'(x)

n—o0

for all x € [a, b]. O



Series of Functions




Series of Real Numbers

Suppose {x,} is a sequence of real numbers. Recall that the
sequence of partial sums is the sequence {s,} defined by

n
=3 .
k=1

If the sequence of partial sums converges, then we write the limit as
[e.e]
xx = lim xp = lim s,.

In this case, we call Y"72; xx a convergent series. A divergent
series is a sequence of partial sums that diverges; we sometimes
abuse notation and write >~z ; xx for divergent series as well.

A series is either a convergent series or a divergent series.

Our goal now is to extend this notion of series to sequences of
functions.

Instructor: David Earn



Series of Functions

Suppose {f,} is a sequence of functions defined on a set D C R.
The sequence of partial sums is the sequence {S,} where S, is
the function defined on D by

Sn(x) = Z fi(x) .
k=1

When talking about limits of the S,,, we will write > 22 fx and
refer to this as a series.
Keep in mind that this is very informal, since the terminology does

not specify any sense in which the S, converge, nor does it assume
that the S, converge at all!

We will now make this more formal.

Instructor: David Earn



Series of Functions

Suppose {f,} is a sequence of functions defined on a domain D,
and {S,} is its sequence of partial sums.

Definition (Convergence of Series)

If the sequence of partial sums {S,} converges pointwise on D to a
function f, then we say that the series Y %2 ; fx converges
pointwise on D to f.

If the {S,} converge uniformly on D to a function f, then we say
that the series Y 7> ; fx converges uniformly on D to f.

In both cases, we will write f = "2 ; fx to denote that the series
converges to f.

Instructor: David Earn
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Series of Functions

The theorems on convergence of sequences of integrable,
continuous and differentiable functions have several immediate
implications for series of functions.

In the following, we assume that {f,} is a sequence of functions
defined on an interval [a, b].

Corollary (Integrals of Series)

Suppose the f, are integrable and Y %2 fx converges uniformly to
a function f. Then f is integrable and

b ce b
[fr=> [
a

k=172

Instructor: David Earn



Series of Functions

Corollary (Continuity of Series)

Suppose the f, are continuous and Y32 ; fx converges uniformly to
a function f. Then f is continuous.

Corollary (Differentiability of Series)
Suppose {f,} is a sequence of differentiable functions on [a, b]
such that

m f, is integrable for each n,

m the series Y 32 | converges uniformly on [a, b] to a
continuous function g,

m the series Y ;2 ; fx converges pointwise to a function f.
Then f is differentiable and f' = Y32 f/.

Instructor: David Earn
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Announcements

m No lecture this Friday (7 March 2025).

m Assignment 4 is posted on the course web site.
Last time: Convergence of sequences of functions:

m Pointwise convergence

m Uniform convergence

Theorem about continuity and uniform convergence

m Theorem about integrability and uniform convergence
m Theorem about differentiability and uniform convergence

m Corollaries for series of functions

Instructor: David Earn



Proving Uniform Convergence of Series of Functions

We have seen that several useful conclusions can be drawn when a
series converges uniformly. The following gives a practical way of
proving uniform convergence for a series of functions.

Theorem (Weierstrass M-test)

Let {f,} be a sequence of functions defined on D C R, and
suppose {M,} is a sequence of real numbers such that

|fn(x)’ < M,, Vx € D, Vn € N.

o0 o0
If Z M, converges, then Z fx converges uniformly.
n=1 k=1

Instructor: David Earn



Proving Uniform Convergence of Series of Functions

Approach to proving the Weierstrass M-test:

n
mlet S,= Z fi  be the nt" partial sum.
k=1

m Show that for every ¢ > 0, there is some N € N so that

sup |Sn(x) — Sm(x)| < €, Vn,m > N.
xeD

This condition is called the uniform Cauchy criterion.

m Prove that the uniform Cauchy criterion implies uniform
convergence.

m This part is an excellent exercise for you.

Note: The proof is similar to the proof of the Cauchy criterion
for real numbers.

Instructor: David Earn



Proving Uniform Convergence of Series of Functions

Proof of the Weierstrass M-test.

Let € > 0. Suppose the series > M, converges. By the Cauchy criterion
for real numbers, there is some integer N so that

< g, Vn,m > N.

n m
> M= M
k=1 k=1
Without loss of generality, we can assume m < n, so the above can be
written

Mpy1 +Mppo+ -+ M, < e
Note that we have S, —S,, = fpy1+ o +---+f,,  so the
assumption that | (x)| < My implies that
15n(x) = Sm(X)| = fmr1(x) + fnpa(x) + - - + folx)]
< Myt + Mpyo + -+ M, < .
This is true Vx € D, hence sug [Sn(x) — Sm(x)| <€, ie,
xe

N

the uniform Cauchy criterion is satisfied. O

Instructor: David Earn



Proving Uniform Convergence of Series of Functions

In order to use the Weierstrass M-test, we need to know whether an
associated series of real numbers converges. The most useful standard
results are:

o0
m The geometric series Za” converges if and only if |a] < 1, in
n=0

which case the sum of the series is

m The Ratio Test: (TBB Theorem 3.28)

. a
If a,>0forall n€ N and lim 2t
n—oo  ap

oo
< 1 then Z a, converges.

n=1
m The Root Test: (TBB Theorem 3.30)

o0
If a, > 0forall neNand lim y/a, <1 then Z a, converges.
n— o0

n=1

Instructor: David Earn



Proving Uniform Convergence of Series of Functions

m The Integral Test: (TBB Theorem 3.35)

Let f be a nonnegative decreasing function on [1, 00) such

that K
/ f exists forall K > 1.
1
Then
> K
Z f(k) converges = lim / f(x)dx exists.
=1 K—o0 J1

(There are many other known results concerning convergence
series of real numbers. See TBB Chapter 3.)

Instructor: David Earn



Proving Uniform Convergence of Series of Functions

Let p > 1, and consider the series Z i) .

kP
k=1
. sin(k 1
This series satisfies fifleg < — forall x € R.
kP kP
o0
Since the series Z 7p Converges (by the integral test), it follows from
k=1

the Weierstrass M-test that the series > - Sinls,’,fx) converges uniformly.

Hence it is a continuous function.

In fact, if p > 2 then the series >~ s'"k,’f X is differentiable:

Let fx(x) = M The f/ are continuous and another application of the
Weierstrass M test shows that Y~ f/ converges uniformly. Hence the
series is differentiable and the derivative is > oy fy.

Instructor: David Earn



Power Series




Power Series

Suppose {a,} is a sequence of real numbers.

Definition (Power Series)

A power series (centred at 0) is a series of the form

oo
Z aka 0
k=0

More generally, a power series centred at c has the form

[e.9]

> an(x — o)k

k=0

Instructor: David Earn



Power Series

Corollary (Convergence of Power Series)
(0.9}

Suppose that the series f(xg) = Z ax§ converges for some
k=0

xo > 0, and suppose 0 < a < xp. Then on [—a, a], the series

f(x)= Z arxX
k=0

converges uniformly. Moreover, f is continuous and
d o0 d "
/ f:Zak/x Ve,d € [—a, a.
@ k=0 Cc
o0

Finally, f is differentiable and Z kaxx*=1 converges uniformly on
k=1
[—a,a] to f'.

Instructor: David Earn



Power Series

o0
Sketch of proof of convergence of f(x) = Z axx* on [~a, 4]
k=0
m Weierstrass M-test with M = akxé‘
= uniform convergence to f.

m Uniform convergence to f =  f is continuous and

d o0 d
/ f:Zak/ xk.
c k=0 c

m That the derivative Y ;- k ax x*~1 converges uniformly on [—a, 4
can be proved via the ratio test (TBB Theorem 3.28) or the root test
(TBB Theorem 3.30).

m Uniform convergence of the derivative series
= uniform limit 7 is differentiable.

Instructor: David Earn



Power Series

o0
Example (The simplest power series: Z xK)

k=0

If 0 < xg < 1, then the series Zxé‘ converges. Consequently, for any
k=0
a € (0,1), the series Zxk converges uniformly on [—a, a] to a
k=0

. 1
differenti i i : e —— .
ifferentiable function, which we know Zx T x

k=0

- 1
Differentiating we obtain: Z kxk=1 = e

prt (1—x)

k1

Integrating (fi 0t btain: = — log(1 — x).
ntegrating (from 0 to x) we obtain kz;) P og(1 —x)

These series are all valid for x € (—1,1).

Instructor: David Earn



How bad can a continuous function be?

Let fo(x) = the distance from x to the nearest integer.

1 - fo(x)
3 2 1 0 1 2 3
1 n
Let fo(x) = gfb(2 x).
fi(x)
/\/\/\/\/

Instructor: David Earn



How bad can a continuous function be?

Instructor: David Earn



How bad can a continuous function be?

n
Now define S,(x) = Z fn(x).
k=1

P S1(x)
3 - 52(x)

VEAVAAVARVaRY

Instructor: David Earn




How bad can a continuous function be?

Instructor: David Earn



How bad can a continuous function be?

3 - Ss(x)
1 0 1

}- S16(x)
1 0 1

Instructor: David Earn
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