

19 Continuity II

- Assignment 3 is posted (and complete).
 Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
- Math 3A03 Test #1 Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

Continuous Functions

Mathematics and Statistics

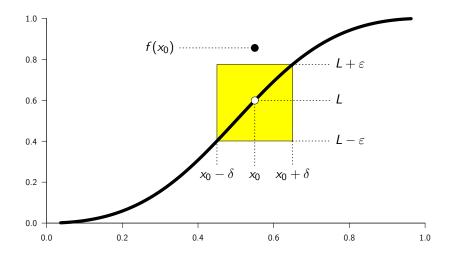
$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 18 Continuity Friday 11 October 2019 Continuity

Limits of functions



Definition (Limit of a function on an interval (a, b))

Let $a < x_0 < b$ and $f : (a, b) \to \mathbb{R}$. Then f is said to *approach the limit* L *as* \times *approaches* x_0 , often written " $f(x) \to L$ as $x \to x_0$ " or

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \) \ 0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon.$$

limitdefinterval

The function f need not be defined on an entire interval. It is enough for f to be defined on a set with at least one accumulation point.

Definition (Limit of a function with domain $E \subseteq \mathbb{R}$)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then f is said to *approach the limit* L *as* \times *approaches* x_0 , *i.e.*,

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$, $x \neq x_0$, and $|x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \end{pmatrix} \ (x \in E \ \land \ 0 < |x - x_0| < \delta) \implies |f(x) - L| < \varepsilon.$

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 3}(2x+1)=7.$$

Proof that $2x + 1 \rightarrow 7$ as $x \rightarrow 3$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x - 3| < \delta \implies$ $|(2x + 1) - 7| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$|(2x+1)-7| < \varepsilon \iff |2x-6| < \varepsilon \iff 2|x-3| < \varepsilon \iff |x-3| < \frac{\varepsilon}{2}$$

Therefore, given $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{2}$. Then $|x - 3| < \delta \implies$ $|(2x + 1) - 7| = |2x - 6| = 2|x - 3| < 2\frac{\varepsilon}{2} = \varepsilon$, as required.

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 2} x^2 = 4.$$

(Solution on next slide)

Proof that $x^2 \rightarrow 4$ as $x \rightarrow 2$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x - 2| < \delta \implies |x^2 - 4| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$\left|x^2-4\right|$$

We can make |x - 2| as small as we like by choosing δ sufficiently small. Moreover, if x is close to 2 then x + 2 will be close to 4, so we should be able to ensure that |x + 2| < 5. To see how, note that

$$\begin{aligned} |x+2| < 5 \iff -5 < x+2 < 5 \iff -9 < x-2 < 1 \\ \iff -1 < x-2 < 1 \iff |x-2| < 1. \end{aligned}$$

Therefore, given $\varepsilon > 0$, let $\delta = \min(1, \frac{\varepsilon}{5})$. Then $|x^2 - 4| = |(x - 2)(x + 2)| = |x - 2| |x + 2| < \frac{\varepsilon}{5}5 = \varepsilon$. Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 18: ε - δ definition of limit

Submit.

Rather than the ε - δ definition, we can exploit our experience with sequences to define " $f(x) \to L$ as $x \to x_0$ ".

Definition (Limit of a function via sequences)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then

$$\lim_{x\to x_0}f(x)=L$$

iff for every sequence $\{e_n\}$ of points in $E \setminus \{x_0\}$,

$$\lim_{n\to\infty} e_n = x_0 \quad \Longrightarrow \quad \lim_{n\to\infty} f(e_n) = L.$$

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 19 Continuity II Tuesday 22 October 2019

- Assignment 3 was due today at 2:25pm via crowdmark. Solutions will be posted today.
- Math 3A03 Test #1

Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)

- An incomplete version of Assignment 4 is posted on the course web site. Due 5 November 2019 at 2:25pm via crowdmark. BUT you should do the posted questions before Test #1 (check again later in the week and over the weekend for additional posted questions).
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

• ε - δ definition of limit of a function

Sequence definition of limit of a function

Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 19: ε - δ vs sequence definition of a limit

Lemma (Equivalence of limit definitions)

The ε - δ definition of limits and the sequence definition of limits are equivalent.

(proof on next two slides)

<u>Note</u>: The definition of a limit via sequences is sometimes easier to use than the ε - δ definition.

18/30

Proof of Equivalence of ε - δ definition and sequence definition of limit.

Proof (ε - $\delta \implies \text{seq}$).

Suppose the ε - δ definition holds and $\{e_n\}$ is a sequence in $E \setminus \{x_0\}$ that converges to x_0 . Given $\varepsilon > 0$, there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$. But since $e_n \to x_0$, given $\delta > 0$, there exists $N \in \mathbb{N}$ such that, for all $n \ge N$, $|e_n - x_0| < \delta$. This means that if $n \ge N$ then $x = e_n$ satisfies $0 < |x - x_0| < \delta$, implying that we can put $x = e_n$ in the statement $|f(x) - L| < \varepsilon$. Hence, for all $n \ge N$, $|f(e_n) - L| < \varepsilon$. Thus,

$$e_n \to x_0 \implies f(e_n) \to L$$
,

as required.

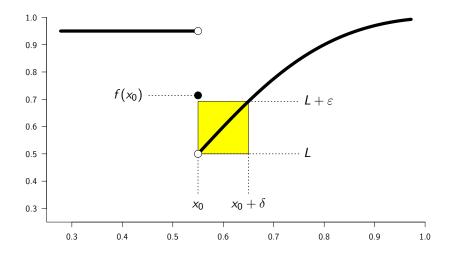
Proof of Equivalence of ε - δ definition and sequence definition of limit.

Proof (seq $\implies \varepsilon \cdot \delta$) via contrapositive.

Suppose that as $x \to x_0$, $f(x) \not\to L$ according to the ε - δ definition. We must show that $f(x) \not\to L$ according to the sequence definition.

Since the ε - δ criterion does <u>not</u> hold, $\exists \varepsilon > 0$ such that $\forall \delta > 0$ there is some $x_{\delta} \in E$ for which $0 < |x_{\delta} - x_0| < \delta$ and yet $|f(x_{\delta}) - L| \ge \varepsilon$. This is true, in particular, for $\delta = 1/n$, where *n* is any natural number. Thus, $\exists \varepsilon > 0$ such that: $\forall n \in \mathbb{N}$, there exists $x_n \in E$ such that $0 < |x_n - x_0| < 1/n$ and yet $|f(x_n) - L| \ge \varepsilon$. This demonstrates that there is a sequence $\{x_n\}$ in $E \setminus \{x_0\}$ for which $x_n \to x_0$ and yet $f(x_n) \not\rightarrow L$. Hence, $f(x) \not\rightarrow L$ as $x \to x_0$ according to the sequence criterion, as required. Continuity II

One-sided limits



Instructor: David Earn Mathematics 3A03 Real Analysis I

Definition (Right-Hand Limit)

Let $f : E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = L$$

if for every $\varepsilon > 0$ there is a $\delta > 0$ so that

$$|f(x) - L| < \varepsilon$$

whenever $x_0 < x < x_0 + \delta$ and $x \in E$.

One-sided limits can also be expressed in terms of sequence convergence.

Definition (Right-Hand Limit – sequence version)

Let $f : E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = L$$

if for every decreasing sequence $\{e_n\}$ of points of E with $e_n > x_0$ and $e_n \to x_0$ as $n \to \infty$,

$$\lim_{n\to\infty}f(e_n)=L.$$

Definition (Right-Hand Infinite Limit)

Let $f : E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = \infty$$

if for every M > 0 there is a $\delta > 0$ such that $f(x) \ge M$ whenever $x_0 < x < x_0 + \delta$ and $x \in E$.

There are theorems for limits of functions of a real variable that correspond (and have similar proofs) to the various results we proved for limits of sequences:

- Uniqueness of limits
- Algebra of limits
- Order properties of limits
- Limits of absolute values
- Limits of Max/Min

See Chapter 5 of textbook for details.

Limits of compositions of functions

When is
$$\lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right)$$
?

Theorem (Limit of composition)

Suppose

$$\lim_{x\to x_0}f(x)=L.$$

If g is a function defined in a neighborhood of the point L and

$$\lim_{z\to L}g(z)=g(L)$$

then

$$\lim_{x\to x_0} g(f(x)) = g\left(\lim_{x\to x_0} f(x)\right) = g(L).$$

(Textbook (TBB) §5.2.5)

Limits of compositions of functions – more generally

<u>Note</u>: It is a little more complicated to generalize the statement of this theorem so as to minimize the set on which g must be defined but the proof is no more difficult.

Theorem (Limit of composition)

Let $A, B \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, $f(A) \subseteq B$, and $g : B \to \mathbb{R}$. Suppose x_0 is an accumulation point of A and

$$\lim_{x\to x_0}f(x)=L.$$

Suppose further that g is defined at L. If L is an accumulation point of B and

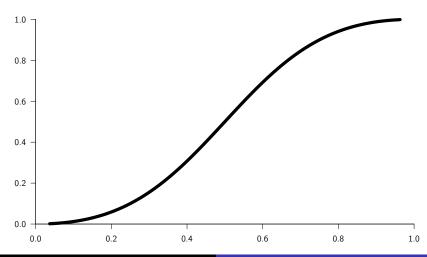
$$\lim_{z\to L}g(z)=g(L)\,,$$

 $\underline{or} \exists \delta > 0$ such that f(x) = L for all $x \in (x_0 - \delta, x_0 + \delta) \cap A$, then

$$\lim_{x\to x_0} g(f(x)) = g\left(\lim_{x\to x_0} f(x)\right) = g(L).$$

Continuity

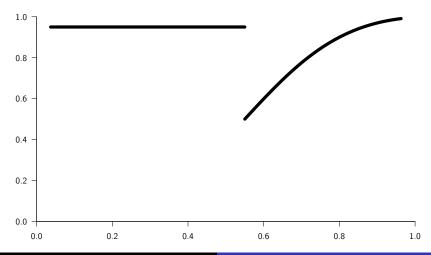
Intuitively, a function f is *continuous* if you can draw its graph without lifting your pencil from the paper...



Instructor: David Earn Mathematics 3A03 Real Analysis I

Continuity

and *discontinuous* otherwise...



Instructor: David Earn Mathematics 3A03 Real Analysis I

In order to develop a rigorous foundation for the theory of functions, we need to be more precise about what we mean by "continuous".

The main challenge is to define "continuity" in a way that works consistently on sets other than intervals (and generalizes to spaces that are more abstract than \mathbb{R}).

We will define:

- continuity at a single point;
- continuity on an open interval;
- continuity on a closed interval;
- continuity on more general sets.

Definition (Continuous at an interior point of the domain of f)

If the function f is defined in a neighbourhood of the point x_0 then we say f is **continuous at** x_0 iff

$$\lim_{x\to x_0}f(x)=f(x_0).$$

This definition works more generally provided x_0 is a point of accumulation of the domain of f (notation: dom(f)).

We will also consider a function to be continuous at any isolated point in its domain.