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18 Continuity

19 Continuity II

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 is posted (and complete).
Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)
Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
Location: MDCL 1105

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
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Continuous Functions

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 18
Continuity

Friday 11 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Definition (Limit of a function on an interval (a, b))
Let a < x0 < b and f : (a, b)→ R. Then f is said to approach
the limit L as x approaches x0, often written “f (x)→ L as
x → x0” or

lim
x→x0

f (x) = L ,

iff for all ε > 0 there exists δ > 0 such that if 0 < |x − x0| < δ
then |f (x)− L| < ε.

Shorthand version:
∀ε > 0 ∃δ > 0 )– 0 < |x − x0| < δ =⇒ |f (x)− L| < ε.
limitdefinterval

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

The function f need not be defined on an entire interval.
It is enough for f to be defined on a set with at least one
accumulation point.

Definition (Limit of a function with domain E ⊆ R)
Let E ⊆ R and f : E → R. Suppose x0 is a point of accumulation
of E . Then f is said to approach the limit L as x approaches
x0, i.e.,

lim
x→x0

f (x) = L ,

iff for all ε > 0 there exists δ > 0 such that if x ∈ E , x 6= x0, and
|x − x0| < δ then |f (x)− L| < ε.

Shorthand version:
∀ε > 0 ∃δ > 0 )–

(
x ∈ E ∧ 0 < |x − x0| < δ

)
=⇒ |f (x)− L| < ε.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Example
Prove directly from the definition of a limit that

lim
x→3

(2x + 1) = 7 .

Proof that 2x + 1→ 7 as x → 3.
We must show that ∀ε > 0 ∃δ > 0 such that 0 < |x − 3| < δ =⇒
|(2x + 1)− 7| < ε. Given ε, to determine how to choose δ, note that

|(2x + 1)− 7| < ε ⇐⇒ |2x − 6| < ε ⇐⇒ 2 |x − 3| < ε ⇐⇒ |x − 3| < ε

2
Therefore, given ε > 0, let δ = ε

2 . Then |x − 3| < δ =⇒
|(2x + 1)− 7| = |2x − 6| = 2 |x − 3| < 2 ε

2 = ε, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Example
Prove directly from the definition of a limit that

lim
x→2

x2 = 4 .

(Solution on next slide)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of functions

Proof that x2 → 4 as x → 2.
We must show that ∀ε > 0 ∃δ > 0 such that 0 < |x − 2| < δ =⇒∣∣x2 − 4

∣∣ < ε. Given ε, to determine how to choose δ, note that∣∣∣x2 − 4
∣∣∣ < ε ⇐⇒ |(x − 2)(x + 2)| < ε ⇐⇒ |x − 2| |x + 2| < ε.

We can make |x − 2| as small as we like by choosing δ sufficiently
small. Moreover, if x is close to 2 then x + 2 will be close to 4, so
we should be able to ensure that |x + 2| < 5. To see how, note
that

|x + 2| < 5 ⇐⇒ − 5 < x + 2 < 5 ⇐⇒ − 9 < x − 2 < 1
⇐= − 1 < x − 2 < 1 ⇐⇒ |x − 2| < 1 .

Therefore, given ε > 0, let δ = min(1, ε5). Then∣∣x2 − 4
∣∣ = |(x − 2)(x + 2)| = |x − 2| |x + 2| < ε

55 = ε.
Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 18: ε-δ definition of limit

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Limits of functions

Rather than the ε-δ definition, we can exploit our experience with
sequences to define “f (x)→ L as x → x0”.

Definition (Limit of a function via sequences)
Let E ⊆ R and f : E → R. Suppose x0 is a point of accumulation
of E . Then

lim
x→x0

f (x) = L

iff for every sequence {en} of points in E \ {x0},

lim
n→∞

en = x0 =⇒ lim
n→∞

f (en) = L .

Instructor: David Earn Mathematics 3A03 Real Analysis I



Continuity II 13/30

Mathematics
and Statistics∫
M

dω =
∫

∂M
ω

Mathematics 3A03
Real Analysis I

Instructor: David Earn

Lecture 19
Continuity II

Tuesday 22 October 2019

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Announcements

Assignment 3 was due today at 2:25pm via crowdmark.
Solutions will be posted today.
Math 3A03 Test #1
Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264
(room is booked for 90 minutes; you should not feel rushed)
An incomplete version of Assignment 4 is posted on the course
web site. Due 5 November 2019 at 2:25pm via crowdmark.
BUT you should do the posted questions before Test #1
(check again later in the week and over the weekend for
additional posted questions).
Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
Location: MDCL 1105

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
https://library.mcmaster.ca/cct/class-dir/jhe-264
https://davidearn.github.io/math3a/assignments/assignments.html
https://crowdmark.com/
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Last time. . .

ε-δ definition of limit of a function

Sequence definition of limit of a function

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Poll

Go to https:
//www.childsmath.ca/childsa/forms/main_login.php

Click on Math 3A03

Click on Take Class Poll

Fill in poll Lecture 19: ε-δ vs sequence definition of a
limit

Submit .

Instructor: David Earn Mathematics 3A03 Real Analysis I

https://www.childsmath.ca/childsa/forms/main_login.php
https://www.childsmath.ca/childsa/forms/main_login.php
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Limits of functions

Lemma (Equivalence of limit definitions)
The ε-δ definition of limits and the sequence definition of limits are
equivalent.

(proof on next two slides)

Note: The definition of a limit via sequences is sometimes easier to
use than the ε-δ definition.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Equivalence of ε-δ definition and sequence
definition of limit.

Proof (ε-δ =⇒ seq).
Suppose the ε-δ definition holds and {en} is a sequence in E \ {x0}
that converges to x0. Given ε > 0, there exists δ > 0 such that if
0 < |x − x0| < δ then |f (x)− L| < ε. But since en → x0, given
δ > 0, there exists N ∈ N such that, for all n ≥ N, |en − x0| < δ.
This means that if n ≥ N then x = en satisfies 0 < |x − x0| < δ,
implying that we can put x = en in the statement |f (x)− L| < ε.
Hence, for all n ≥ N, |f (en)− L| < ε. Thus,

en → x0 =⇒ f (en)→ L ,

as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Proof of Equivalence of ε-δ definition and sequence
definition of limit.

Proof (seq =⇒ ε-δ) via contrapositive.
Suppose that as x → x0, f (x) 6→ L according to the ε-δ definition.
We must show that f (x) 6→ L according to the sequence definition.

Since the ε-δ criterion does not hold, ∃ε > 0 such that ∀δ > 0
there is some xδ ∈ E for which 0 < |xδ − x0| < δ and yet
|f (xδ)− L| ≥ ε. This is true, in particular, for δ = 1/n, where n is
any natural number. Thus, ∃ε > 0 such that: ∀n ∈ N, there exists
xn ∈ E such that 0 < |xn − x0| < 1/n and yet |f (xn)− L| ≥ ε.
This demonstrates that there is a sequence {xn} in E \ {x0} for
which xn → x0 and yet f (xn) 6→ L. Hence, f (x) 6→ L as x → x0
according to the sequence criterion, as required.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits

Definition (Right-Hand Limit)
Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) = L

if for every ε > 0 there is a δ > 0 so that

|f (x)− L| < ε

whenever x0 < x < x0 + δ and x ∈ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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One-sided limits

One-sided limits can also be expressed in terms of sequence
convergence.

Definition (Right-Hand Limit – sequence version)
Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) = L

if for every decreasing sequence {en} of points of E with en > x0
and en → x0 as n→∞,

lim
n→∞

f (en) = L .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Infinite limits

Definition (Right-Hand Infinite Limit)
Let f : E → R be a function with domain E and suppose that x0 is
a point of accumulation of E ∩ (x0,∞). Then we write

lim
x→x+

0

f (x) =∞

if for every M > 0 there is a δ > 0 such that f (x) ≥ M whenever
x0 < x < x0 + δ and x ∈ E .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Properties of limits

There are theorems for limits of functions of a real variable that
correspond (and have similar proofs) to the various results we
proved for limits of sequences:

Uniqueness of limits
Algebra of limits
Order properties of limits
Limits of absolute values
Limits of Max/Min

See Chapter 5 of textbook for details.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of compositions of functions

When is lim
x→x0

g
(
f (x)

)
= g

(
lim

x→x0
f (x)

)
?

Theorem (Limit of composition)
Suppose

lim
x→x0

f (x) = L .

If g is a function defined in a neighborhood of the point L and

lim
z→L

g(z) = g(L)

then
lim

x→x0
g
(
f (x)

)
= g

(
lim

x→x0
f (x)

)
= g(L) .

(Textbook (TBB) §5.2.5)

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Limits of compositions of functions – more generally
Note: It is a little more complicated to generalize the statement of this
theorem so as to minimize the set on which g must be defined but the proof is
no more difficult.

Theorem (Limit of composition)
Let A,B ⊆ R, f : A→ R, f (A) ⊆ B, and g : B → R. Suppose x0 is an
accumulation point of A and

lim
x→x0

f (x) = L .

Suppose further that g is defined at L. If L is an accumulation point of B
and

lim
z→L

g(z) = g(L) ,

or ∃δ > 0 such that f (x) = L for all x ∈ (x0 − δ, x0 + δ) ∩ A, then

lim
x→x0

g
(
f (x)

)
= g

(
lim

x→x0
f (x)

)
= g(L) .

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity
Intuitively, a function f is continuous if you can draw its graph
without lifting your pencil from the paper. . .
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity
and discontinuous otherwise. . .
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Instructor: David Earn Mathematics 3A03 Real Analysis I
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Continuity

In order to develop a rigorous foundation for the theory of
functions, we need to be more precise about what we mean by
“continuous”.

The main challenge is to define “continuity” in a way that works
consistently on sets other than intervals (and generalizes to spaces
that are more abstract than R).

We will define:
continuity at a single point;
continuity on an open interval;
continuity on a closed interval;
continuity on more general sets.

Instructor: David Earn Mathematics 3A03 Real Analysis I
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Pointwise continuity

Definition (Continuous at an interior point of the domain of f )
If the function f is defined in a neighbourhood of the point x0 then
we say f is continuous at x0 iff

lim
x→x0

f (x) = f (x0) .

This definition works more generally provided x0 is a point of
accumulation of the domain of f (notation: dom(f ) ).

We will also consider a function to be continuous at any isolated
point in its domain.

Instructor: David Earn Mathematics 3A03 Real Analysis I


