## 14 Topology of $\mathbb{R}$

- **15** Topology of  $\mathbb{R}$  II
- **16** Topology of  $\mathbb{R}$  III
- **17** Topology of  $\mathbb{R}$  IV
- 18 Examples; Q&A



## Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

## Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 14 Topology of ℝ Monday 10 February 2025

Instructor: David Earn Mathematics 3A03 Real Analysis

#### Topology of ${\mathbb R}$

## Announcements

- Solutions to Assignment 2 have been reposted after correcting some errors (thanks to Kieran for spotting these).
  - There were typos in Q2(b) and Q4.
  - **Q**3 was incomplete because I assumed f(x) was positive.
- Assignment 3 is posted on the course web site. Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I reposted the slides for Lecture 13. Slide 79 now contains a sequence of hints for proving  $\pi$  is irrational.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

# Topology of ${\mathbb R}$

Instructor: David Earn Mathematics 3A03 Real Analysis I

## Intervals



Open interval:

$$(a, b) = \{x : a < x < b\}$$

Closed interval:

$$[c,d] = \{x : c \le x \le d\}$$

Half-open interval:

$$(e, f] = \{x : e < x \le f\}$$

## Interior point



### Definition (Interior point)

If  $E \subseteq \mathbb{R}$  then x is an *interior point* of E if x lies in an open interval that is contained in E, *i.e.*,

$$\exists c > 0 \quad ) \quad (x - c, x + c) \subset E.$$

## Interior point examples

| Set E                                                | Interior points? |
|------------------------------------------------------|------------------|
| (-1, 1)                                              |                  |
| [0,1]                                                |                  |
| $\mathbb{N}$                                         |                  |
| $\mathbb{R}$                                         |                  |
| $\mathbb{Q}$                                         |                  |
| $(-1,1)\cup [0,1]$                                   |                  |
| $\left(-1,1 ight)\setminus \left\{rac{1}{2} ight\}$ |                  |

## Neighbourhood



### Definition (Neighbourhood)

A *neighbourhood* of a point  $x \in \mathbb{R}$  is an open interval containing x.

## Deleted neighbourhood



### Definition (Deleted neighbourhood)

A *deleted neighbourhood* of a point  $x \in \mathbb{R}$  is a set formed by removing x from a neighbourhood of x.



 $E = (a_1, b_1) \cup [a_2, b_2) \cup \{x\}$ 

### Definition (Isolated point)

If  $x \in E \subseteq \mathbb{R}$  then x is an *isolated point* of E if there is a neighbourhood of x for which the only point in E is x itself, *i.e.*,

$$\exists c > 0 \quad ) \quad (x - c, x + c) \cap E = \{x\}.$$

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Isolated points

### Submit.

## Isolated point examples

| Set E                                      | Isolated points? |
|--------------------------------------------|------------------|
| (-1, 1)                                    |                  |
| [0, 1]                                     |                  |
| N                                          |                  |
| $\mathbb{R}$                               |                  |
| $\mathbb{Q}$                               |                  |
| $(-1,1)\cup \llbracket 0,1  bracket$       |                  |
| $\left(-1,1 ight)\setminus \{rac{1}{2}\}$ |                  |

## Accumulation point

$$E = \left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$$

## Definition (Accumulation Point or Limit Point or Cluster Point)

If  $E \subseteq \mathbb{R}$  then x is an *accumulation point* of E if every neighbourhood of x contains infinitely many points of E.

i.e., 
$$\forall c > 0$$
  $(x - c, x + c) \cap (E \setminus \{x\}) \neq \emptyset$ .

### Note:

- It is possible but not necessary that  $x \in E$ .
- The shorthand condition is equivalent to saying that every deleted neighbourhood of x contains at least one point of E.

#### Limit points

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Topology: Accumulation points**

### Submit.

## Accumulation point examples

| Set E                                         | Accumulation points? |
|-----------------------------------------------|----------------------|
| (-1, 1)                                       |                      |
| [0, 1]                                        |                      |
| $\mathbb{N}$                                  |                      |
| $\mathbb{R}$                                  |                      |
| Q                                             |                      |
| $(-1,1)\cup \llbracket 0,1  brace$            |                      |
| $(-1,1)\setminus\{rac{1}{2}\}$               |                      |
| $\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$ |                      |

## Boundary point



### Definition (Boundary Point)

If  $E \subseteq \mathbb{R}$  then x is a **boundary point** of E if every neighbourhood of x contains at least one point of E and at least one point not in E, *i.e.*,  $\forall c > 0$ ,  $(x = c, x + c) \cap E \neq \emptyset$ 

$$\forall c > 0 \qquad (x - c, x + c) \cap E \neq \varnothing \\ \land \qquad (x - c, x + c) \cap (\mathbb{R} \setminus E) \neq \varnothing .$$

<u>*Note:*</u> It is possible but <u>not necessary</u> that  $x \in E$ .

Definition (Boundary)

If  $E \subseteq \mathbb{R}$  then the **boundary** of *E*, denoted  $\partial E$ , is the set of all boundary points of *E*.

## Boundary point examples

| Set E                                         | <b>Boundary points?</b> |
|-----------------------------------------------|-------------------------|
| (-1, 1)                                       |                         |
| [0, 1]                                        |                         |
| $\mathbb{N}$                                  |                         |
| $\mathbb{R}$                                  |                         |
| $\mathbb{Q}$                                  |                         |
| $(-1,1)\cup \llbracket 0,1 \rrbracket$        |                         |
| $(-1,1)\setminus \{rac{1}{2}\}$              |                         |
| $\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$ |                         |



 $\overline{E}=E\cup E'.$ 

<u>Note</u>: If the set E has no accumulation points, then E is closed because there are no accumulation points to check.

## Open set



Definition (Open set)

A set  $E \subseteq \mathbb{R}$  is *open* if every point of *E* is an interior point.

Definition (Interior of a set)

If  $E \subseteq \mathbb{R}$  then the *interior* of E, denoted int(E) or  $E^{\circ}$ , is the set of all interior points of E.

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Open or Closed

### Submit.

## Examples

| Set E                                         | Closed? | Open? | Ē | E° | ∂E |
|-----------------------------------------------|---------|-------|---|----|----|
| (-1,1)                                        |         |       |   |    |    |
| [0, 1]                                        |         |       |   |    |    |
| $\mathbb{N}$                                  |         |       |   |    |    |
| $\mathbb{R}$                                  |         |       |   |    |    |
| Ø                                             |         |       |   |    |    |
| $\mathbb{Q}$                                  |         |       |   |    |    |
| $(-1,1) \cup [0,1]$                           |         |       |   |    |    |
| $(-1,1)\setminus \{rac{1}{2}\}$              |         |       |   |    |    |
| $\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}$ |         |       |   |    |    |



## Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

## Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 15 Topology of ℝ II Wednesday 12 February 2025 22/77

## Announcements (same as on Monday, 10 Feb 2025)

- Solutions to Assignment 2 have been reposted after correcting some errors (thanks to Kieran for spotting these).
  - There were typos in Q2(b) and Q4.
  - **Q**3 was incomplete because I assumed f(x) was positive.
- Assignment 3 is posted on the course web site. Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I reposted the slides for Lecture 13. Slide 79 now contains a sequence of hints for proving  $\pi$  is irrational.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

### 24/77

## Topological concepts covered so far

### Interval

- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point
- Accumulation point

- Boundary point
- Boundary
- Closed set
- Closure
- Open set
- Interior

## Equivalent definitions

### Example (<u>Closure</u>)

For  $E \subseteq \mathbb{R}$ , prove  $E \cup E' = E \cup \partial E$ , so  $\overline{E}$  can be defined either way.

*Proof:* We must show  $E \cup E' \subseteq E \cup \partial E$  and  $E \cup E' \supseteq E \cup \partial E$ .

- ⊆ Suppose  $x \in E \cup E'$ . If  $x \in E$  then  $x \in E \cup A$  for any set A. In particular,  $x \in E \cup \partial E$ . Alternatively, suppose  $x \notin E$ , *i.e.*,  $x \in E^c$ . Then, since  $x \in E \cup E'$ , it must be that  $x \in E'$ , which means that any neighbourhood of x contains a point of E. But  $x \in E^c$ , so any such neighbourhood also contains a point of  $E^c$  (namely x). Therefore,  $x \in \partial E \subseteq E \cup \partial E$ .
- ⊇ Suppose  $x \in E \cup \partial E$ . If  $x \in E$  then  $x \in E \cup A$  for any set A. In particular,  $x \in E \cup E'$ . Alternatively, suppose  $x \notin E$ , *i.e.*,  $x \in E^c$ . Then, since  $x \in E \cup \partial E$ , it must be that  $x \in \partial E$ , which means that any neighbourhood of x contains a point of E. But that point is not x, since  $x \notin E$ . Thus, any *deleted* neighbourhood of x contains a point of E. Contains a point of E. But that point is not x, since  $x \notin E$ . Thus, any *deleted* neighbourhood of x contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains a point of E. C contains a point of E contains

Question: In the proof above, did we use any properties of  $\mathbb R$  ?

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: The most general type of open set

### Submit.

## Component intervals of open sets

What does the most general open set look like?

### Theorem (Component intervals)

If G is an open subset of  $\mathbb{R}$  and  $G \neq \emptyset$  then there is a unique (possibly finite) sequence of <u>disjoint</u> open intervals  $\{(a_n, b_n)\}$  such that

$$G = (a_1, b_1) \cup (a_2, b_2) \cup \cdots \cup (a_n, b_n) \cup \cdots,$$
  
i.e., 
$$G = \bigcup_{n=1}^{\infty} (a_n, b_n).$$

The open intervals  $(a_n, b_n)$  are said to be the **component** intervals of *G*.

(TBB Theorem 4.15, p. 231)

28/77

## Component intervals of open sets

Main ideas of proof of component intervals theorem:

- $x \in G \implies x$  is an interior point of  $G \implies$ 
  - some neighbourhood of x is contained in G, *i.e.*,  $\exists c > 0$  such that  $(x - c, x + c) \subseteq G$
  - $\exists$  a <u>largest</u> neighbourhood of x that is contained in G: this "*component of* G" is  $I_x = (\alpha, \beta)$ , where

 $\alpha = \inf\{\mathbf{a}: (\mathbf{a}, \mathbf{x}] \subset \mathbf{G}\}, \qquad \beta = \sup\{\mathbf{b}: [\mathbf{x}, \mathbf{b}) \subset \mathbf{G}\}$ 

- Every component  $I_x$  contains a rational number, *i.e.*,  $\exists r \in I_x \cap \mathbb{Q}$ ■ But for any  $y \in I_x$ , we have  $I_y = I_x$
- $\therefore$  If  $r_1, r_2 \in \mathbb{Q}$  and  $r_1, r_2 \in I_x$  then  $I_{r_1} = I_{r_2} = I_x$ .
- Components with different endpoints cannot overlap (they would contradict the inf and sup) so distinct components are disjoint
- ... We can index (label) each component with a (unique) rational number
- $\therefore$  There are at most countably many intervals that make up G (*i.e.*, G is the union of a <u>sequence</u> of disjoint intervals)
- See textbook for details (TBB Theorem 4.15, p. 231).

## Open vs. Closed Sets

Definition (Complement of a set of real numbers)

If  $E \subseteq \mathbb{R}$  then the *complement* of *E* is the set

$$E^{\mathsf{c}} = \{ x \in \mathbb{R} : x \notin E \} \,.$$

### Theorem (Open vs. Closed)

```
If E \subseteq \mathbb{R} then E is open iff E^{c} is closed.
```

### (TBB Theorem 4.16)

## Open vs. Closed Sets

### Theorem (Properties of open sets of real numbers)

- **1** The sets  $\mathbb{R}$  and  $\emptyset$  are open.
- **2** Any intersection of a finite number of open sets is open.
- **3** Any union of an arbitrary collection of open sets is open.
- 4 The complement of an open set is closed.

### (TBB Theorem 4.17)

### Theorem (Properties of closed sets of real numbers)

- **1** The sets  $\mathbb{R}$  and  $\emptyset$  are closed.
- 2 Any union of a finite number of closed sets is closed.
- 3 Any intersection of an arbitrary collection of closed sets is closed.
- 4 The complement of a closed set is open.

### (TBB Theorem 4.18)

### Definition (Bounded function)

A real-valued function f is **bounded** on the set E if there exists M > 0 such that  $|f(x)| \le M$  for all  $x \in E$ .

(*i.e.*, the function f is bounded on E iff  $\{f(x) : x \in E\}$  is a bounded set.)

<u>Note</u>: This is a *global* property because there is a single bound M associated with the entire set E.

### Example

The function  $f(x) = 1/(1 + x^2)$  is bounded on  $\mathbb{R}$ . *e.g.*, M = 1.





f(x) = 1/x is <u>not</u> bounded on the interval E = (0, 1).



f(x) = 1/x is *locally bounded* on the interval E = (0, 1), *i.e.*,  $\forall x \in E$ ,  $\exists \delta_x, M_x > 0 + |f(t)| \leq M_x \ \forall t \in (x - \delta_x, x + \delta_x).$ 

### Definition (Locally bounded at a point)

A real-valued function f is *locally bounded* at the point x if there is a neighbourhood of x in which f is bounded, *i.e.*, there exists  $\delta_x > 0$  and  $M_x > 0$  such that  $|f(t)| \le M_x$  for all  $t \in (x - \delta_x, x + \delta_x)$ .

### Definition (Locally bounded on a set)

A real-valued function f is *locally bounded* on the set E if f is locally bounded at each point  $x \in E$ .

<u>Note</u>: The size of the neighbourhood  $(\delta_x)$  and the local bound  $(M_x)$  depend on the point x.

### Example (Function that is not even locally bounded)

Give an example of a function that is defined on the interval (0, 1) but is <u>not</u> locally bounded on (0, 1).

Let's construct a function f(x) that is defined on (0, 1) but is not locally bounded at one point, say  $x = \frac{1}{2}$ .

f(x) must blow up  $x = \frac{1}{2}$ . Let's make f look like 1/x, but shifted so the blowup is at  $x = \frac{1}{2}$ .

$$f(x) = \begin{cases} \frac{1}{x - \frac{1}{2}} & x \neq \frac{1}{2}, \\ 0 & x = \frac{1}{2}. \end{cases}$$

### Example (Function that is a mess near 0)

Give an example of a function f(x) that is defined everywhere, yet in <u>any</u> neighbourhood of the origin there are infinitely many points at which f is <u>not</u> locally bounded.

### Please do poll: Topology: Local boundedness

Consider  $S(x) = \begin{cases} \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$ S(x) is bounded on  $\mathbb{R}$ , hence locally bounded at every point.

Consider  $T(x) = \begin{cases} \tan \frac{1}{x} & x \neq 0 \text{ and } \cos \frac{1}{x} \neq 0 \\ 0 & x = 0 \text{ or } \cos \frac{1}{x} = 0 \end{cases}$ T(x) is not locally bounded at points where  $\cos \frac{1}{x} = 0$ , *i.e.*, for  $\frac{1}{x} = \frac{\pi}{2} + n\pi$ ,  $n \in \mathbb{Z}$ . There are infinitely many such points in any neighbourhood of x = 0.


## Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

## Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 16 Topology of ℝ III Friday 14 February 2025

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll **Poll on polls**



- Poll for Assignment 3 will be live after class today.
   Participation deadline is Monday 24 Feb 2025 @ 11:25 am.
- I improved the sketch of the component intervals theorem proof on slide 28.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. You will be given double time.

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Locally bounded nowhere?

### Submit.

## Local vs. Global properties

# Extra Challenge Problem: Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is <u>not</u> locally bounded <u>anywhere</u>?

## Local vs. Global properties

- What condition(s) rule out such pathological behaviour?
- When does a property holding locally (near any given point in a set) imply that it holds globally (for the set as a whole)?
- For example: What condition(s) must a set E ⊆ R satisfy in order that a function f that is locally bounded on E is necessarily bounded on E?
- We will see that the condition we are seeking is that the set E must be "compact" ...

Recall the Bolzano-Weierstrass theorem, for sequences of real numbers:

Theorem (Bolzano-Weierstrass theorem for sequences)

Every bounded sequence in  $\mathbb{R}$  contains a convergent subsequence.

For any set of real numbers, we define:

Definition (Bolzano-Weierstrass property)

A set  $E \subseteq \mathbb{R}$  is said to have the **Bolzano-Weierstrass property** iff any sequence of points chosen from *E* has a subsequence that converges to a point in *E*.

Theorem (Bolzano-Weierstrass theorem for sets)

A set  $E \subseteq \mathbb{R}$  has the Bolzano-Weierstrass property iff E is closed and bounded.

#### (TBB Theorem 4.21, p. 241)

### Proof of $\Leftarrow$ .

Suppose *E* is closed and bounded. Let  $\{x_n\}$  be a sequence in *E*. Since *E* is bounded, the usual Bolzano-Weierstrass theorem implies that there is a subsequence  $\{x_{n_k}\}$  that converges. If  $\{x_{n_k}\}$  is eventually constant, then its limit is a point in *E*, so we're done. Otherwise,  $\{x_{n_k}\}$  must converge to an accumulation point of *E*. But *E* is closed, so it contains all its accumulation points, including the limit of  $\{x_{n_k}\}$ . Thus, again, we have a subsequence of  $\{x_n\}$  that converges to a point in *E*.

### Theorem (Bolzano-Weierstrass theorem for sets)

A set  $E \subseteq \mathbb{R}$  has the Bolzano-Weierstrass property iff E is closed and bounded.

### $\mathsf{Proof of} \implies (\mathsf{Part 1})$

Let's prove the contrapositive, *i.e.*, If E is either not bounded or not closed then *E* does not have the Bolzano-Weierstrass property. *Suppose E* is unbounded. In particular, suppose *E* is not bounded above (the argument is similar if E is not bounded below). We will construct a sequence in E that has no convergent subsequence. Pick a point  $x_1 \in E$ such that  $x_1 > 1$  (which is possible because *E* is not bounded above). Also, since *E* is not bounded above, we can find  $x_2 \in E$  such that  $x_2 > x_1 + 1 > 2$ . More generally, given  $x_k \in E$  we can find  $x_{k+1} \in E$  such that  $x_{k+1} > x_k + 1 > k + 1$ . The sequence  $\{x_n\}$  constructed in this way is increasing and diverges to  $\infty$  (since  $x_n > n$  for all  $n \in \mathbb{N}$ ). Moreover, this is true of any subsequence of  $\{x_n\}$ .  $\therefore$  *E* does not have the Bolzano-Weierstrass property.

Theorem (Bolzano-Weierstrass theorem for sets)

A set  $E \subseteq \mathbb{R}$  has the Bolzano-Weierstrass property iff E is closed and bounded.

### Proof of $\implies$ (Part 2)

Now suppose *E* is not closed. Then there must be a sequence  $\{x_n\}$  in *E* such that  $\{x_n\}$  converges to a point <u>not</u> in *E*. If *E* has the Bolzano-Weierstrass property, then  $\{x_n\}$  has a subsequence that converges to a point in *E*. But every subsequence of a convergent sequence must converge to the same point as the full sequence, and the full sequence converges to a point <u>not</u> in *E*! Thus, if *E* is not closed *then it does not have the Bolzano-Weierstrass property.* 

### Theorem (Bolzano-Weierstrass theorem for sets)

A set  $E \subseteq \mathbb{R}$  has the Bolzano-Weierstrass property iff E is closed and bounded.

### <u>Notes</u>:

- Why do we need both *closed* and *bounded*? Why don't we need *closed* in the Bolzano-Weierstrass theorem for sequences?
  - Because the statement of the Bolzano-Weierstrass theorem for sequences doesn't require the limit of the convergent subsequence to be in the set!
- The Bolzano-Weierstrass theorem for sets implies that "If  $E \subseteq \mathbb{R}$  is bounded then its closure  $\overline{E}$  has the Bolzano-Weierstrass property".
  - The Bolzano-Weierstrass theorem for sequences is a special case of this statement because any convergent sequence together with its limit is a closed set.

### Definition (Open Cover)

Let  $E \subseteq \mathbb{R}$  and let  $\mathcal{U}$  be a family of open intervals. If for every  $x \in E$  there exists at least one interval  $U \in \mathcal{U}$  such that  $x \in U$ , *i.e.*,

$$E\subseteq \bigcup\{U:U\in \mathcal{U}\},\$$

then  $\mathcal{U}$  is called an *open cover* of E.

### Example (Open covers of $\mathbb{N}$ )

Give examples of open covers of  $\mathbb{N}$ .

• 
$$\mathcal{U} = \left\{ \left( n - \frac{1}{2}, n + \frac{1}{2} \right) : n = 1, 2, ... \right\}$$
  
•  $\mathcal{U} = \{ (0, \infty) \}$   
•  $\mathcal{U} = \{ (0, \infty), \mathbb{R}, (\pi, 27) \}$ 

### Example (Open covers of $\{\frac{1}{n} : n \in \mathbb{N}\}$ )

• 
$$\mathcal{U} = \{(0, 1), (0, 2), \mathbb{R}, (\pi, 27)\}$$
  
•  $\mathcal{U} = \{(0, 2)\}$   
•  $\mathcal{U} = \{\left(\frac{1}{n}, \frac{1}{n} + \frac{3}{4}\right) : n = 1, 2, \ldots\}$ 

### Example (Open covers of [0, 1])

• 
$$\mathcal{U} = \{(-2,2)\}$$
  
•  $\mathcal{U} = \{(-\frac{1}{2},\frac{1}{2}), (0,2)\}$   
•  $\mathcal{U} = \{(\frac{1}{n},2) : n = 1, 2, ...\} \cup \{(-\frac{1}{2},\frac{1}{2})\}$ 

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Open covers of inverse squares

### Submit.

### Definition (Heine-Borel Property)

A set  $E \subseteq \mathbb{R}$  is said to have the *Heine-Borel property* if every open cover of *E* can be reduced to a finite subcover. That is, if  $\mathcal{U}$ is an open cover of *E*, then there exists a finite subfamily  $\{U_1, U_2, \ldots, U_n\} \subseteq \mathcal{U}$ , such that  $E \subseteq U_1 \cup U_2 \cup \cdots \cup U_n$ .

When does any open cover of a set E have a <u>finite</u> subcover?

Theorem (Heine-Borel Theorem)

A set  $E \subseteq \mathbb{R}$  has the Heine-Borel property iff E is both closed and bounded.

(TBB pp. 249-250)

### Definition (Compact Set)

A set  $E \subseteq \mathbb{R}$  is said to be *compact* if it has any of the following equivalent properties:

- **1** *E* is closed and bounded.
- **2** *E* has the Bolzano-Weierstrass property.
- **3** *E* has the Heine-Borel property.

<u>Note</u>: In spaces other than  $\mathbb{R}$ , these three properties are <u>not</u> necessarily equivalent. Usually the Heine-Borel property is taken as the definition of compactness.

### Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it is <u>not</u> closed or <u>not</u> bounded.

#### Example

Prove that the interval (0, 1] is <u>not</u> compact by showing that it does <u>not</u> have the Bolzano-Weierstrass property.

#### Example

Prove that the interval (0,1] is <u>not</u> compact by showing that it does <u>not</u> have the Heine-Borel property.

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Compactness

### Submit.



## Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

## Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 17 Topology of ℝ IV Monday 24 February 2025

## Announcements

- The participation deadline for Assignment 3 was 11:25am today. Solutions were posted on Wednesday last week.
- Kieran's solutions to problems are now on the tutorials page of the course web site.
- All the polls are posted on the polls page of the course web site.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. The test is officially 90 minutes long, but you will have the full three hours if you want it.
- We will discuss the structure of the test at the end of today's class.

## Topological concepts that we have covered

- Interval
- Neighbourhood
- Deleted neighbourhood
- Interior point
- Isolated point
- Accumulation point
- Boundary point

- Boundary
- Closed set
- Closure
- Open set
- Interior
- Complement
- Compact

Classic non-trivial compactness argument:

Theorem (Compact  $\implies$  bounded if locally bounded)

Let E be a compact subset of  $\mathbb{R}$ . If  $f : E \to \mathbb{R}$  is locally bounded on E then f is bounded on E.

#### Proof via Bolzano-Weierstrass.

Suppose *f* is locally bounded on *E*, and that *E* satisfies the Bolzano-Weierstrass property. Suppose further, in order to derive a contradiction, that *f* is <u>not</u> bounded on *E*. Then there is some sequence  $\{x_n\}$  in *E* such that  $|f(x_n)| > n$  (otherwise  $|f(x_n)| \le N$  for some  $N \in \mathbb{N}$ , so *N* would be a bound). By the Bolzano-Weierstrass property,  $\{x_n\}$  has a subsequence  $\{x_{n_k}\}$  such that  $x_{n_k} \to L \in E$ . Since *f* is locally bounded, there exist  $\delta > 0$  and M > 0 such that  $|f(x)| \le M$  for all  $x \in (L - \delta, L + \delta)$ . But  $x_{n_k} \to L$ , so for all sufficiently large *k*,  $x_{n_k} \in (L - \delta, L + \delta)$ . Yet for sufficiently large *k*,  $|f(x_{n_k})| > n_k \ge k > M$ .  $\Rightarrow \Leftarrow$ . Hence *f* must, in fact, be bounded on *E*.

### Theorem (Compact $\implies$ bounded if locally bounded)

Let E be a compact subset of  $\mathbb{R}$ . If  $f : E \to \mathbb{R}$  is locally bounded on E then f is bounded on E.

#### Proof via Heine-Borel.

Since *f* is locally bounded, each  $x \in E$  lies in some open interval  $U_x$  such that  $|f(t)| \leq M_x$  for all  $t \in U_x$ . The collection  $\mathcal{U} = \{U_x : x \in E\}$  is an open cover of *E*. But *E* satisfies the Heine-Borel property, so  $\mathcal{U}$  contains a finite subcover, say  $\{U_{x_1}, \ldots, U_{x_n}\}$ . We can therefore find a bound for *f* on all of *E*. Let  $M = \max\{M_{x_1}, \ldots, M_{x_n}\}$ . Then  $|f(x)| \leq M$  for all  $x \in E$ .

Proof via Heine-Borel is much easier!

### Theorem (Compact $\implies$ bounded if locally bounded)

Let E be a compact subset of  $\mathbb{R}$ . If  $f : E \to \mathbb{R}$  is locally bounded on E then f is bounded on E.

### Example (Converse of above theorem)

Let  $E \subseteq \mathbb{R}$ . If every function  $f : E \to \mathbb{R}$  that is locally bounded on E is bounded on E, then E is compact.

<u>Note</u>: The contrapositive of the converse is: If  $E \subseteq \mathbb{R}$  is <u>not</u> compact then  $\exists f : E \to \mathbb{R} \ )$  *f* is locally bounded on *E* but <u>not</u> bounded on *E*.

### Example ("bounded if locally bounded" $\implies$ compact)

Consider the contrapositive: if  $E \subseteq \mathbb{R}$  is not compact then there exists a function  $f : E \to \mathbb{R}$  that is locally bounded but not bounded on E.

Suppose E is not compact. Then either E is not bounded or not closed.

Suppose first that E is not bounded, and let f(x) = x. Then f is locally bounded at any point  $x \in E$ , since f is bounded on any neighbourhood of x that has finite width; but f(E) = E is an unbounded set, so f is an unbounded function on E.

Now suppose *E* is not closed. Then there is an accumulation point of *E* that is not in *E*, *i.e.*, there exists a sequence  $\{x_n\} \subseteq E$  such that  $x_n \to L \notin E$  as  $n \to \infty$ . Since  $L \notin E$ , for any  $x \in E$  we have  $x - L \neq 0$ , so we can define  $f(x) = \frac{1}{x-L}$  for all  $x \in E$ . But since *L* is a limit point of *E*, there are points in *E* that are arbitrarily close to *L*, hence points at which |f(x)| is arbitrarily large. Thus, *f* is unbounded on *E*.

## Complements and Closures problem

### Example

How many distinct sets can be obtained from E = [0, 1] by applying the complement and closure operations?

Consider this sequence of sets:

$$\begin{array}{lll} E_1 &= & [0,1], \\ E_2 &= & E_1^c &= & (-\infty,0) \cup (1,\infty), \\ E_3 &= & \overline{E_2} &= & (-\infty,0] \cup [1,\infty), \\ E_4 &= & E_3^c &= & (0,1), \\ E_5 &= & \overline{E_4} &= & E_1. \end{array}$$

Is the answer 4 for any set  $E \subseteq \mathbb{R}$ ?

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Topology: Complements and Closures

### Submit.

## Complements and Closures problem

# Extra Challenge Problem

If  $E \subseteq \mathbb{R}$ , how many distinct sets can be obtained by taking complements or closures of E and its successors? Put another way, if  $\{E_n\}$  is a sequence of sets produced by taking the complement or closure of the previous set, how many distinct sets can such a sequence contain? If the answer is finite, find a set E that generates the maximum number in this way.

## Midterm Test

### What you need to know:

- Everything discussed in class, including all definitions/concepts and theorems/lemmas/corollaries.
- Everything in assignments and solutions to assignments. Make sure you fully understand all the solutions to all the problems in all the assignments.
- Most—but <u>not all</u>—of the material that you are responsible for is covered in the chapters of the textbooks indicated on the course web page. You are <u>not</u> responsible for material in the textbooks that was <u>not</u> mentioned in lectures, tutorials or assignments.
- It is essential that you understand how to use the definitions and theorems to construct proofs.

## Midterm Test

## Let's look at the test.



## Mathematics and Statistics $\int_{M} d\omega = \int_{\partial M} \omega$

## Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 18 Examples; Q&A Wednesday 26 February 2025

### Announcements

- The participation deadline for Assignment 3 was 11:25am today. Solutions were posted on Wednesday last week.
- Kieran's solutions to problems are now on the tutorials page of the course web site.
- All the polls are posted on the polls page of the course web site.
- The midterm TEST is on Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- The room is booked for 7:00–10:00 pm, but the intention is that a reasonable amount of time for the test is one hour. The test is officially 90 minutes long, but you will have the full three hours if you want it.
- We discussed the structure of the test at the end of Monday's class.

## Poll

### Go to

https://www.childsmath.ca/childsa/forms/main\_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Example: sup of sum

### Submit.

### Example (sup of sum)

### Suppose $E \subseteq \mathbb{R}$ , and f and g are defined and bounded on E. Prove that

$$\sup_{x \in E} \{f(x) + g(x)\} \le \sup_{x \in E} \{f(x)\} + \sup_{x \in E} \{g(x)\}.$$

### Proof

 $\begin{aligned} \sup_{x \in E} \{f(x)\} \text{ is an upper bound for } f(x) \text{ on } E. \\ \text{Consequently,} \quad f(x) \leq \sup_{x \in E} \{f(x)\} \quad \text{ for all } x \in E. \\ \text{Similarly,} \quad g(x) \leq \sup_{x \in E} \{g(x)\} \quad \text{ for all } x \in E. \\ \therefore \quad f(x) + g(x) \leq \sup_{x \in E} \{f(x)\} + \sup_{x \in E} \{g(x)\} \quad \text{ for all } x \in E \\ \implies \quad \sup_{x \in E} [f(x) + g(x)] \leq \sup_{x \in E} \{f(x)\} + \sup_{x \in E} \{g(x)\} \quad \Box \end{aligned}$ 

### Example (Integral of sum)

Prove that if f and g are integrable on [a, b] then f + g is integrable on [a, b] and

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g.$$

#### Proof

To establish that f + g is integrable, we need to show that for any  $\varepsilon > 0$  there is a partition P of [a, b] such that

$$U(f + g, P) - L(f + g, P) < \varepsilon.$$

We will use the fact that f and g are both integrable.

... continued...

### Proof of sum of integrals theorem (continued)

Since f is integrable, for any  $\varepsilon > 0$  there is a partition of [a, b], say  $P_f$ , such that

$$U(\mathbf{f}, P_{\mathbf{f}}) - L(\mathbf{f}, P_{\mathbf{f}}) < \frac{\varepsilon}{2}$$

Similarly, since g is integrable, for any  $\varepsilon > 0$  there is a partition of [a, b], say  $P_g$ , such that

$$U(\mathbf{g}, P_{\mathbf{g}}) - L(\mathbf{g}, P_{\mathbf{g}}) < \frac{\varepsilon}{2}.$$

Create a finer partition  $P = P_f \cup P_g$ . Then

$$L(f, P_f) \leq L(f, P) \leq \int_a^b f \leq U(f, P) \leq U(f, P_f),$$

and similarly

$$L(g, P_g) \leq L(g, P) \leq \int_a^b g \leq U(g, P) \leq U(g, P_g).$$

... continued...
## Proof of sum of integrals theorem (continued)

Consequently,

$$U(f,P) - L(f,P) \leq U(f,P_f) - L(f,P_f) < \frac{\varepsilon}{2},$$
  
$$U(g,P) - L(g,P) \leq U(f,P_g) - L(f,P_g) < \frac{\varepsilon}{2}.$$

Now recall the definition  $U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$ , where  $M_i = \sup\{(f(x) : t_{i-1} \le x \le t_i\}$ , and recall the sup of sum example, which implies

$$U(f+g, P) \leq U(f, P) + U(g, P). \qquad (*)$$

There is also a corresponding "inf of sum" result, which implies

$$L(f,P) + L(g,P) \leq L(f+g,P) \qquad (**)$$

From the definition of lower and upper sums, we also know that

$$L(f+g, P) \leq U(f+g, P). \qquad (***)$$

Putting together (\*) (\*\*), and (\*\*\*), we have

... continued...

Proof of sum of integrals theorem (continued)

$$L(f,P) + L(g,P) \leq L(f+g,P)$$
  
$$\leq U(f+g,P) \leq U(f,P) + U(g,P)$$

from which it follows that

$$U(f + g, P) - L(f + g, P)$$

$$\leq (U(f, P) + U(g, P)) - (L(f, P) + L(g, P))$$

$$= (U(f, P) - L(f, P)) + (U(g, P) - L(g, P))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

:. f + g is integrable. Consequently, in  $(\spadesuit)$ ,  $\int_a^b (f + g)$  is the unique number that lies between L(f + g, P) and U(f + g, P) for any partition P. Similarly,  $\int_a^b f + \int_a^b g$  is the unique number that lies between the outermost quantities in  $(\spadesuit)$  for all P. Therefore,  $\int_a^b (f + g) = \int_a^b f + \int_a^b g$ , as required.

### Example (Characteristics of open sets)

Prove the fundamental properties of open sets.

#### Proof that $\mathbb{R}$ is open.

$$x\in\mathbb{R}$$
  $\implies$   $x\in(x-1,x+1)$   $\subset$   $\mathbb{R}$   $\implies$   $x\in\mathbb{R}^{\circ}.$ 

 $\therefore$  Every  $x \in \mathbb{R}$  is an interior point of  $\mathbb{R}$ , *i.e.*,  $\mathbb{R}$  is open.

#### Proof that $\varnothing$ is open.

Since there are no points in  $\emptyset$ , every point in  $\emptyset$  is an interior point of  $\emptyset$ , so  $\emptyset$  is open.

#### Proof that any union of open sets is open.

Suppose  $\mathcal{U}$  is a collection of open sets, and  $x \in \bigcup_{U \in \mathcal{U}} U$ . Then  $x \in U$  for some  $U \in \mathcal{U}$ , *i.e.*,  $x \in U$  for some open set  $U \subseteq \bigcup_{U \in \mathcal{U}} U$ . So  $\bigcup_{U \in \mathcal{U}} U$  is open.

#### Proof that any finite intersection of open sets is open.

Suppose  $U_1$  and  $U_2$  are open. If  $U_1$  and  $U_2$  are disjoint, then their intersection is  $\emptyset$ , which is open. If  $U_1 \cap U_2 \neq \emptyset$  then let  $x \in U_1 \cap U_2$ . Since  $x \in U_1$ ,  $\exists \delta_1 > 0 + (x - \delta_1, x + \delta_1) \subseteq U_1$ . Similarly, since  $x \in U_2$ ,  $\exists \delta_2 > 0 + (x - \delta_2, x + \delta_2) \subseteq U_2$ .

Let  $\delta = \min{\{\delta_1, \delta_2\}}$ . Then  $(x - \delta, x + \delta) \subseteq U_1 \cap U_2$ . So x is an interior point of  $U_1 \cap U_2$ . Hence  $U_1 \cap U_2$  is open.

The result for any finite intersection follows by induction. Since

$$\bigcap_{i=1}^n U_i = \left(\bigcap_{i=1}^{n-1} U_i\right) \bigcap U_n,$$

we can apply the induction hypothesis together with the result for the intersection of two open sets to infer the result for n open sets.

# DON'T FORGET THE TEST TOMORROW!

- The midterm TEST is on TOMORROW: Thursday 27 February 2025 @ 7:00pm in Hamilton Hall 302.
- I have an office hour this afternoon, 2:00-3:00pm.

# **GOOD LUCK!**