18 Continuity

Announcements

- Assignment 3 is posted (and complete).

Due Tuesday 22 October 2019 at 2:25pm via crowdmark.

- Math 3A03 Test \#1

Tuesday 29 October 2019, 5:30-7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)

■ Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am-11:30am Location: MDCL 1105

Continuous Functions

McMaster University

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 18
Continuity
Friday 11 October 2019

Limits of functions

Limits of functions

Definition (Limit of a function on an interval (a, b))

Let $a<x_{0}<b$ and $f:(a, b) \rightarrow \mathbb{R}$. Then f is said to approach the limit L as x approaches x_{0}, often written " $f(x) \rightarrow L$ as $x \rightarrow x_{0}$ " or

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

iff for all $\varepsilon>0$ there exists $\delta>0$ such that if $0<\left|x-x_{0}\right|<\delta$ then $|f(x)-L|<\varepsilon$.

Shorthand version:
$\forall \varepsilon>0 \exists \delta>0$) $0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\varepsilon$.

Limits of functions

The function f need not be defined on an entire interval. It is enough for f to be defined on a set with at least one accumulation point.

Definition (Limit of a function with domain $E \subseteq \mathbb{R}$)

Let $E \subseteq \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$. Suppose x_{0} is a point of accumulation of E. Then f is said to approach the limit L as x approaches x_{0}, i.e.,

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

iff for all $\varepsilon>0$ there exists $\delta>0$ such that if $x \in E, x \neq x_{0}$, and $\left|x-x_{0}\right|<\delta$ then $|f(x)-L|<\varepsilon$.

Shorthand version:
$\forall \varepsilon>0 \exists \delta>0)\left(x \in E \wedge 0<\left|x-x_{0}\right|<\delta\right) \Longrightarrow|f(x)-L|<\varepsilon$.

Limits of functions

Example

Prove directly from the definition of a limit that

$$
\lim _{x \rightarrow 3}(2 x+1)=7
$$

Proof that $2 x+1 \rightarrow 7$ as $x \rightarrow 3$.
We must show that $\forall \varepsilon>0 \exists \delta>0$ such that $0<|x-3|<\delta \Longrightarrow$ $|(2 x+1)-7|<\varepsilon$. Given ε, to determine how to choose δ, note that
$|(2 x+1)-7|<\varepsilon \Longleftrightarrow|2 x-6|<\varepsilon \Longleftrightarrow 2|x-3|<\varepsilon \Longleftrightarrow|x-3|<\frac{\varepsilon}{2}$
Therefore, given $\varepsilon>0$, let $\delta=\frac{\varepsilon}{2}$. Then $|x-3|<\delta \Longrightarrow$
$|(2 x+1)-7|=|2 x-6|=2|x-3|<2 \frac{\varepsilon}{2}=\varepsilon$, as required.

Limits of functions

Example

Prove directly from the definition of a limit that

$$
\lim _{x \rightarrow 2} x^{2}=4
$$

(Solution on next slide)

Limits of functions

Proof that $x^{2} \rightarrow 4$ as $x \rightarrow 2$.

We must show that $\forall \varepsilon>0 \exists \delta>0$ such that $0<|x-2|<\delta \Longrightarrow$ $\left|x^{2}-4\right|<\varepsilon$. Given ε, to determine how to choose δ, note that $\left|x^{2}-4\right|<\varepsilon \Longleftrightarrow|(x-2)(x+2)|<\varepsilon \Longleftrightarrow|x-2||x+2|<\varepsilon$.

We can make $|x-2|$ as small as we like by choosing δ sufficiently small. Moreover, if x is close to 2 then $x+2$ will be close to 4 , so we should be able to ensure that $|x+2|<5$. To see how, note that

$$
\begin{aligned}
|x+2|<5 & \Longleftrightarrow-5<x+2<5 \Longleftrightarrow-9<x-2<1 \\
& \Longleftrightarrow-1<x-2<1 \Longleftrightarrow|x-2|<1 .
\end{aligned}
$$

Therefore, given $\varepsilon>0$, let $\delta=\min \left(1, \frac{\varepsilon}{5}\right)$. Then $\left|x^{2}-4\right|=|(x-2)(x+2)|=|x-2||x+2|<\frac{\varepsilon}{5} 5=\varepsilon$.

Poll

- Go to https: //www.childsmath.ca/childsa/forms/main_login.php

■ Click on Math 3A03
■ Click on Take Class Poll
■ Fill in poll Lecture 18: $\varepsilon-\delta$ definition of limit

- Submit.

Limits of functions

Rather than the $\varepsilon-\delta$ definition, we can exploit our experience with sequences to define " $f(x) \rightarrow L$ as $x \rightarrow x_{0}$ ".

Definition (Limit of a function via sequences)

Let $E \subseteq \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$. Suppose x_{0} is a point of accumulation of E. Then

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

iff for every sequence $\left\{e_{n}\right\}$ of points in $E \backslash\left\{x_{0}\right\}$,

$$
\lim _{n \rightarrow \infty} e_{n}=x_{0} \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} f\left(e_{n}\right)=L
$$

