

- Assignment 3 is posted (and complete).
 Due Tuesday 22 October 2019 at 2:25pm via crowdmark.
- Math 3A03 Test #1 Tuesday 29 October 2019, 5:30–7:00pm, in JHE 264 (room is booked for 90 minutes; you should not feel rushed)
- Math 3A03 Final Exam: Fri 6 Dec 2019, 9:00am–11:30am
 Location: MDCL 1105

Continuous Functions

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 18 Continuity Friday 11 October 2019 Continuity

Limits of functions

Definition (Limit of a function on an interval (a, b))

Let $a < x_0 < b$ and $f : (a, b) \to \mathbb{R}$. Then f is said to *approach the limit* L *as* \times *approaches* x_0 , often written " $f(x) \to L$ as $x \to x_0$ " or

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version: $\forall \varepsilon > 0 \ \exists \delta > 0 \) \ 0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon.$

The function f need not be defined on an entire interval. It is enough for f to be defined on a set with at least one accumulation point.

Definition (Limit of a function with domain $E \subseteq \mathbb{R}$)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then f is said to *approach the limit* L *as* \times *approaches* x_0 , *i.e.*,

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$, $x \neq x_0$, and $|x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \end{pmatrix} \ (x \in E \ \land \ 0 < |x - x_0| < \delta) \implies |f(x) - L| < \varepsilon.$

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 3}(2x+1)=7.$$

Proof that $2x + 1 \rightarrow 7$ as $x \rightarrow 3$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x - 3| < \delta \implies$ $|(2x + 1) - 7| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$|(2x+1)-7| < \varepsilon \iff |2x-6| < \varepsilon \iff 2|x-3| < \varepsilon \iff |x-3| < \frac{\varepsilon}{2}$$

Therefore, given $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{2}$. Then $|x - 3| < \delta \implies$ $|(2x + 1) - 7| = |2x - 6| = 2|x - 3| < 2\frac{\varepsilon}{2} = \varepsilon$, as required.

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 2} x^2 = 4.$$

(Solution on next slide)

Proof that $x^2 \rightarrow 4$ as $x \rightarrow 2$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x - 2| < \delta \implies |x^2 - 4| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$\left|x^2-4\right|$$

We can make |x - 2| as small as we like by choosing δ sufficiently small. Moreover, if x is close to 2 then x + 2 will be close to 4, so we should be able to ensure that |x + 2| < 5. To see how, note that

$$\begin{aligned} |x+2| < 5 \iff -5 < x+2 < 5 \iff -9 < x-2 < 1 \\ \iff -1 < x-2 < 1 \iff |x-2| < 1. \end{aligned}$$

Therefore, given $\varepsilon > 0$, let $\delta = \min(1, \frac{\varepsilon}{5})$. Then $|x^2 - 4| = |(x - 2)(x + 2)| = |x - 2| |x + 2| < \frac{\varepsilon}{5}5 = \varepsilon$. Go to https:

//www.childsmath.ca/childsa/forms/main_login.php

- Click on Math 3A03
- Click on Take Class Poll
- Fill in poll Lecture 18: ε - δ definition of limit

Submit.

Rather than the ε - δ definition, we can exploit our experience with sequences to define " $f(x) \to L$ as $x \to x_0$ ".

Definition (Limit of a function via sequences)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then

$$\lim_{x\to x_0}f(x)=L$$

iff for every sequence $\{e_n\}$ of points in $E \setminus \{x_0\}$,

$$\lim_{n\to\infty} e_n = x_0 \implies \lim_{n\to\infty} f(e_n) = L.$$